Write a system of equation based on the number
For an instance, the two numbers are a and b.
"The sum of two numbers is 59" can be written as follows.
⇒ a + b = 59 <em>(first equation)
</em>"The difference is 15" can be written as follows.
⇒ a - b = 15 <em>(second equation)</em>
Solve the system of equation by elimination/substitution method.
First, eliminate b to find the value of a.
a + b = 59
a - b = 15
--------------- + (add)
2a = 74
a = 74/2
a = 37
Second, substitute 37 as a in one of the equations
a + b = 59
37 + b = 59
b = 59 - 37
b = 22
The numbers are 37 and 22
(-2,2)
i just did my homework with the same question
Answer:
we need a number line for this question...
Step-by-step explanation:
Answer:

Domain: All Real Numbers
General Formulas and Concepts:
<u>Algebra I</u>
- Domain is the set of x-values that can be inputted into function f(x)
<u>Calculus</u>
The derivative of a constant is equal to 0
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Chain Rule: ![\frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdx%7D%5Bf%28g%28x%29%29%5D%20%3Df%27%28g%28x%29%29%20%5Ccdot%20g%27%28x%29)
Derivative: ![\frac{d}{dx} [ln(u)] = \frac{u'}{u}](https://tex.z-dn.net/?f=%5Cfrac%7Bd%7D%7Bdx%7D%20%5Bln%28u%29%5D%20%3D%20%5Cfrac%7Bu%27%7D%7Bu%7D)
Step-by-step explanation:
<u>Step 1: Define</u>
f(x) = ln(2x² + 1)
<u>Step 2: Differentiate</u>
- Derivative ln(u) [Chain Rule/Basic Power]:

- Simplify:

- Multiply:

<u>Step 3: Domain</u>
We know that we would have issues in the denominator when we have a rational expression. However, we can see that the denominator would never equal 0.
Therefore, our domain would be all real numbers.
We can also graph the differential function to analyze the domain.