We are comparing maxima. From the graph we know that the max of one graph is +2 at x = -2. What about the other graph? Need to find the vertex to find the max.
Complete the square of <span>h(x) = -x^2 + 4x - 2:
</span>h(x) = -x^2 + 4x - 2 = -(x^2 - 4x) -2
= -(x^2 - 4x + 4 - 4) - 2
=-(x^2 - 4x + 4) -2+4
= -(x-2)^2 + 2 The equation describing this parabola is y=-(x-2)^2 + 2, from which we know that the maximum value is 2, reached when x = 2.
The 2 graphs have the same max, one at x = -2 and one at x = + 2.
Answer: the length of string that been let out to fly the kite this high is 172.89 ft
Step-by-step explanation:
The length of string attached to the kite, the vertical height of the kite above the ground and the ground distance forms a right angle triangle.
With an angle of 57 degrees, the length of the string that is attached to the kite represents the hypotenuse of the right angle triangle.
The height of the kite above the ground represents the opposite side of the triangle
To determine h, the length of the string that has been let out to fly the kite this high, we would apply the
Sine trigonometric ratio which is expressed as
Sine θ = opposite side/hypotenuse
Sin 57 = 145/h
h = 145/Sin57 = 145/0.8387
h = 172.89
Divide and multiply the numbers :)
Answer:
well the answer is 15,8
Step-by-step explanation:
yocopy and paste it on brainly
4 * 2 = 8
8 + 5 = 13
B, is the correct answer