Answer:
381 different types of pizza (assuming you can choose from 1 to 7 ingredients)
Step-by-step explanation:
We are going to assume that you can order your pizza with 1 to 7 ingredients.
- If you want to choose 1 ingredient out of 7 you have 7 ways to do so.
- If you want to choose 2 ingredients out of 7 you have C₇,₂= 21 ways to do so
- If you want to choose 3 ingredients out of 7 you have C₇,₃= 35 ways to do so
- If you want to choose 4 ingredients out of 7 you have C₇,₄= 35 ways to do so
- If you want to choose 5 ingredients out of 7 you have C₇,₅= 21 ways to do so
- If you want to choose 6 ingredients out of 7 you have C₇,₆= 7 ways to do so
- If you want to choose 7 ingredients out of 7 you have C₇,₇= 1 ways to do so
So, in total you have 7 + 21 + 35 + 35 + 21 +7 + 1 = 127 ways of selecting ingredients.
But then you have 3 different options to order cheese, so you can combine each one of these 127 ways of selecting ingredients with a single, double or triple cheese in the crust.
Therefore you have 127 x 3 = 381 ways of combining your ingredients with the cheese crust.
Therefore, there are 381 different types of pizza.
F(x) = 30.eˣ
We notice that the graph intercept y-axis at 30
in f(x) = 30.eˣ , for x=0, e⁰ =1 and f(x) = 30
In short it's the only function that has a y-intercept = 30 (answer B)
Answer:
F to B Your welcome :)
Step-by-step explanation:
biiiiiiiiiiiiitch
Step-by-step explanation:
I don't understand what one