Q1. The answers are (–1, 8), (0, 7), (3, 18)
<span>–3x + y ≥ 7
</span>Let's go through all choices:
<span>(–2, –3)
</span>(-3) * (-2) + (-3) ≥ 7
6 - 3 ≥ 7
3 ≥ 7 INCORRECT
(–1, 8)
(-3) * (-1) + 8 ≥ 7
3 + 8 ≥ 7
11 ≥ 7 CORRECT
(0, 7)
(-3) * 0 + 7 ≥ 7
0 + 7 ≥ 7
7 ≥ 7 CORRECT
(1, 9)
(-3) * 1 + 9 ≥ 7
-3 + 9 ≥ 7
6 ≥ 7 INCORRECT
(3, 18)
(-3) * 3 + 18 ≥ 7
-9 + 18 ≥ 7
9 ≥ 7 CORRECT
Q2. The answers are:
5x + 12y ≤ 80
x ≥ 4
<span>y ≥ 0
</span>
<span>x - small boxes
</span><span>y - large boxes
</span>He has x small boxes that weigh 5 lb each and y large boxes that weigh 12 lb each <span>on a shelf that holds up to 80 lb:
5x + 12y </span>≤ 80
Jude needs at least 4 small boxes on the shelf: x ≥ 4
Let's check if y can be 0:
5x + 12y ≤ 80
5x + 12 * 0 ≤ 80
5x + 0 ≤ 80
5x ≤ 80
x ≤ 80 / 5
x ≤ 16
x ≥ 4 can include x ≤ 16
So, y can be 0: y ≥ 0
250 lunches are produced by the small business in last week.
<u>Step-by-step explanation:</u>
It is given that,
- y ⇒ the average cost per week.
- x ⇒ the number of lunches produced per week.
The function relating these two factors x and y is given as y = 2.1x + 75
- The cost of the last week is y = $600.
- The lunches made last week is x = unknown.
<u>To find the value of x :</u>
Substitute y= 600 in the given function,
⇒ 600 = 2.1x + 75
⇒ 2.1x = 600 - 75
⇒ x = 525 / 2.1
⇒ x = 250
Therefore, the lunches prepared last week is 250.
Answer:
x=14
Step-by-step explanation:
2 times x = 2x and 2 time 9 is 18 so the equation is 2x-18=10. then you add 18 to both sides and get 2x=28 then simplify to x=14
Answer:
Step-by-step explanation:
3 purple : 1 white
30 arangement will need so
minimum will need (3+1)=4 flowers per 30 arangements =120 flowers
minimum will be (90 purple: 30 white)
A tranversal is a line that cuts and divides other lines proportionately