Answer:
360 in^3 (360 inches squared)
Step-by-step explanation:
Find area of each surface:
8 in*9 in=72 in^2
15 in*9 in=135 in^2
17 in*9 in=153 in^2
then, add up all the numbers:
72+135+153=360 in^3
The given angles are
M = 64
N = 48
where P is unknown. While we don't know P at first, we can solve for it. Recall that for any triangle, the three angles always add to 180 degrees
M+N+P = 180
64+48+P = 180
112+P = 180
112+P-112 = 180-112
P = 68
-------------------------------------------
So in summary so far
M = 64
N = 48
P = 68
The shortest side is opposite the smallest angle. The side MP is opposite the smallest angle N = 48
The longest side is going to be opposite the largest angle. In this case, side MN is opposite the largest angle P = 68
The medium side is opposite the medium angle. So NP is the medium side length
-------------------------------------------------------
Final Answers:
Shortest Side = MP
Medium Side = NP
Longest Side = MN
See the attached image for a visual summary
The ascending order would be: MP, NP, MN
Note: Something like MP is the same as PM. The order of endpoints for any given individual segment doesn't matter
Area of ∆=1/2bh
80yd^2=1/2(b)(10yd)
80yd^2=5yd(b)
80yd^2÷5yd=b
16yd=b
<u>Given</u>:
The given equation is 
We need to determine the approximate value of q.
<u>Value of q:</u>
To determine the value of q, let us solve the equation for q.
Hence, Subtracting
on both sides of the equation, we get;

Subtracting both sides of the equation by 2q, we have;

Dividing both sides of the equation by -1, we have;

Now, substituting the value of
, we have;

Subtracting the values, we get;

Thus, the approximate value of q is 0.585
Hence, Option C is the correct answer.