Answer:
3.24
Explanation:
The dissociation equation for the carboxylic acid can be represented as follows:
RCOOH —-> RCOO- + H+
We can use an ICE table to get the value of the concentration of the hydrogen ion. ICE stands for initial, change and equilibrium.
RCOOH RCOO- H+
Initial 0.2 0.0. 0.0
Change -x +x. +x
Equilibrium 0.2-x. x. x
We can now find the value of x as follows:
Ka = [RCOO-][H+]/[RCOOH]
(1.66* 10^-6) = (x * x)/(0.2-x)
(1.66 * 10^-6) (0.2-x) = x^2
x^2 = (3.32* 10^-7) - (1.66*10^-6)x
x^2 + (1.66 * 10^-6)x - (3.32* 10^-7) = 0
Solving the quadratic equation to get x:
x = 0.0005753650094369094 or - 0.0005753650094369094
As concentration cannot be negative, we discard the negative answer
Hence [H+] = 0.0005753650094369094
By definition, pH = -log[H+]
pH = -log(0.0005753650094369094)
pH = 3.24
Answer:
The molarity of the diluted HCl solution: <u>M₂ = 0.045 M</u>
Explanation:
To find- the molarity of the diluted HCl solution (M₂)
Given- <u>For original HCl solution</u>-
Molarity: M₁ = 1.5 M, Volume: V₁ = 60.0 ml = 0.06 L (∵ 1L = 1000 mL)
Then this original solution is diluted to a volume of 2 L
Thus <u>for the diluted HCl solution</u>-
The Volume of the diluted HCl solution: V₂ = 2 L
<u>So the Molarity of the diluted HCl solution (M₂) can be calculated by the </u><u><em>dilution equation:</em></u>



<u>Therefore, the molarity of the diluted HCl solution: M₂ = 0.045 M</u>
Answer:
2-ethly-3-5 dimethylheptam
Explanation:
trust meeeeee
Take the given 2.00 moles of hydrogen then divide it by 1 mole of hydrogen. Second you want to multiply the answer by 22.4L. Giving you an answer of 44.8L of hydrogen
It is possible to have experiments in which you have multiple variables.