Sorry, I won't understand your words.
The beaker of acetic acid will cool more quickly.
The specific heat capacity of acetic acid is about half that of water.
Thus, it takes twice as much heat gain (or loss) in acetic acid to cause a given change in temperature.
If everything else is constant and heat is being lost at the same rate, the temperature of the acetic acid should drop twice as fast as that of water.
Omg i lost everything ugh
To do it again
1. 12g+2(16g)= 44g/mol
25.01/ 44g/mol= .... mol
2. 14g+3(1g)= 17g/mol
34.05g/ 17g/mol=.... mol
3. 23g+1g+ 12g+ 3(16g)= 84g/mol
17.31g/ 84g/mol=.... mol
4. 6(12g)+12(1g)+6(16g)= 180g/mol
123.44g/ 180g/mol=.... mol
5. 23g+16g+1g= 40g/mol
2.2mol x 40g/mol= .... g
6. 2(35g)= 71g/mol
4.5mol x 71g/mol= .... g
7. 137g+ 2(14g)+ 6(16g)= 261g/mol
0.002mol x 261g/mol= ....g
8. 2(56g)+ 3(32g)+ 12(16g)= 400g/mol
5.4mol x 400g/mol=.... g
I cant believe i had to do this all over
I think they are called ionic bonds.
Based on the balanced chemical reaction presented above, every mole of magnesium (Mg) yields one mole of diatomic hydrogen (H2). When converted to masses, every 24.3 grams of magnesium yields 2 grams of hydrogen.
From the given, there are 20 grams of magnesium available for the reaction. With this amount, the expected yield of hydrogen is 1.646 grams. To calculate the percent yield, divide the actual yield to the hypothetical yield.
*The case is impossible because the actual yield is greater than the theoretical yield.
If we assume that there had been a typographical error and that the actual yield is 0.7 grams instead of 1.7 grams, the percent yield becomes 42.5%. Thus, the answer is letter E.