Taking into account the definition of density, the density of the sample is 0.5
.
It is necessary yo know that density is defined as the property that matter, whether solid, liquid or gas, has to compress into a given space.
In other words, density allows you to measure the amount of mass in a certain volume of a substance.
Then, the expression for the calculation of density is the quotient between the mass of a body and the volume it occupies:

In this case, you know:
Then, replacing in the definition of density:

Solving:
<u><em>density= 0.5 </em></u>
<u><em /></u>
Finally, the density of the sample is 0.5
.
Learn more about density:
Answer:
1,100,160J or 262.94 kcal
Explanation:
The juice is frozen at 0 degrees Celsius and I assume that it will become gas at 100 degrees Celsius. So we change the form of the water from solid to liquid, then to gas. That means we have to find out how much heat needed to change water form too, not only the heat needed to increase its temperature.
The latent heat of water is 4.2J/g °C while the heat of fusion is 334 J/g and the heat of vaporization is 2260 J/g. The energy needed will be:
360g * 4.2J/g °C * (110-0°C ) + 360g * 334 J/g + 360g * 2260 /g = 1,100,160J or 262.94 kcal.
Answer:
eletrons
Explanation:
eletrons is not in the neuclus its around it
The balanced chemical reaction would be
<span>fecl2 + 2naoh = fe(oh)2(s) + 2nacl
Initial amounts of the reactants are given, so, we need to determine which of the reactants is the limiting reactant and use this amount to determine what is asked. However, what is being asked is how many of the FeCl2 is used in the reaction, showing that it is NaOH that is the limiting reactants. Thus, we just use the initial amount of NaOH and relate the substances by the chemical reaction as follows:
6 mol NaOH ( 1 mol FeCl2 / 2 mol NaOH ) = 3 mol FeCl2
Therefore, 3 moles of FeCl2 is used up and 3 moles of FeCl2 is also left after the reaction.</span>