1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nekit [7.7K]
3 years ago
12

V(t)=875-50t

Mathematics
1 answer:
Mandarinka [93]3 years ago
6 0
Use socratic instead of this
You might be interested in
Use reasoning to solve for the unknown number. five is the quotient of 100 / some number what is the number 5 is the quotient of
Virty [35]

Answer: 20

Step-by-step explanation: just do 100/5=20 so do 100/20=5 hope this helps!!

5 0
2 years ago
What is the vertex of the parabola<br> 1. (-1,0)<br> 2. (0,-3)<br> 3. (1,-4)<br> 4. (3,0)
larisa [96]
The answer is (1,-4)
Remember that the vertex is the center of the parabola.
3 0
3 years ago
Please help with this its a little confusing
Molodets [167]
What about it? What is the question?
8 0
3 years ago
If SDE ~ SWT, find WT.
faust18 [17]

Formula used: 40+x = 4x-3 x is used for <em>ET</em>

Step-by-step explanation:

40+x = 4x-3

<u>+</u><u>3</u> <u>+</u><u>3</u>

43+x = 4x

<u>-</u><u>x</u> <u>-</u><u>x</u>

<u>43</u> = <u>3x</u>

3 3

14.3 = x

then substitude this on 5x+3 on <em>W</em><em>T</em> and you arr good

5 0
3 years ago
Helppp me plsssssssss<br><br>​
Oliga [24]

Answer:

The class 35 - 40 has maximum frequency. So, it is the modal class.

From the given data,

  • \sf \:\:\:\:\:\:\:\:\:\:x_{k}=35
  • \sf \:\:\:\:\:\:\:\:\:\:f_{k}=50
  • \sf \:\:\:\:\:\:\:\:\:\:f_{k-1}=34
  • \sf \:\:\:\:\:\:\:\:\:\:f_{k+1}=42
  • \sf \:\:\:\:\:\:\:\:\:\:h=5

{\bf \:\: {By\:using\:the\: formula}} \\ \\

\:\dag\:{\small{\underline{\boxed{\sf {Mode,\:M_{o} =\sf\red{x_k + {\bigg(h \times \: \dfrac{ ( f_k - f_{k-1})}{ (2f_k - f_{k - 1} - f_{k +1})}\bigg)}}}}}}} \\ \\

\sf \:\:\:\:\:\:\:\:\:= 35+ {\bigg(5 \times \dfrac{(50 - 34)}{ ( 2 \times 50 - 34 - 42)}\bigg)} \\ \\

\sf \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:= 35 +{\bigg(5 \times \dfrac{16}{24}\bigg)} \\ \\

\sf \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:= {\bigg(35+\dfrac{10}{3}\bigg)} \\ \\

\sf \:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:(35 + 3.33) =.38.33 \\ \\

\:\:\sf {Hence,}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\ \large{\underline{\mathcal{\gray{ mode\:=\:38.33}}}} \\ \\

{\large{\frak{\pmb{\underline{Additional\: information }}}}}

MODE

  • Most precisely, mode is that value of the variable at which the concentration of the data is maximum.

MODAL CLASS

  • In a frequency distribution the class having maximum frequency is called the modal class.

{\bf{\underline{Formula\:for\: calculating\:mode:}}} \\

{\underline{\boxed{\sf {Mode,\:M_{o} =\sf\red{x_k + {\bigg(h \times \: \dfrac{ ( f_k - f_{k-1})}{ (2f_k - f_{k - 1} - f_{k +1})}\bigg)}}}}}} \\ \\

Where,

\sf \small\pink{ \bigstar} \: x_{k}= lower\:limit\:of\:the\:modal\:class\:interval.

\small \blue{ \bigstar}\sf \: f_{k}=frequency\:of\:the\:modal\:class

\sf \small\orange{ \bigstar}\: f_{k-1}=frequency\:of\:the\:class\: preceding\:the\;modal\:class

\sf \small\green{ \bigstar}\: f_{k+1}=frequency\:of\:the\:class\: succeeding\:the\;modal\:class

\small \purple{ \bigstar}\sf \: h= width \:of\:the\:class\:interval

7 0
3 years ago
Other questions:
  • Simplify square root of -40
    6·2 answers
  • Explain how dilations and functions are related?
    6·2 answers
  • Write the slope intercept form of the equation of the line described
    9·1 answer
  • Suppose that trees are distributed in a forest according to a two-dimensional Poisson process with parameter α, the expected num
    15·1 answer
  • Can anyone help the way they put the answers confuses me..
    11·1 answer
  • A bike with an original price of $70 is discounted 40% what is the sales price
    5·2 answers
  • Solve for the value of p
    6·1 answer
  • *6. Five brothers each bought two hot dogs &amp; a bag of chips. If the chips
    6·2 answers
  • 100 percent of your income after you retire will probably come from social security and the companies that employed you
    7·1 answer
  • Chuck bought 19 movie tickets for $174.50.
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!