Answer:
Since a/2⁽ⁿ ⁺ ¹⁾b < a/2ⁿb, we cannot find a smallest positive rational number because there would always be a number smaller than that number if it were divided by half.
Step-by-step explanation:
Let a/b be the rational number in its simplest form. If we divide a/b by 2, we get another rational number a/2b. a/2b < a/b. If we divide a/2b we have a/2b ÷ 2 = a/4b = a/2²b. So, for a given rational number a/b divided by 2, n times, we have our new number c = a/2ⁿb where n ≥ 1
Since
= a/(2^∞)b = a/b × 1/∞ = a/b × 0 = 0, the sequence converges.
Now for each successive division by 2, a/2⁽ⁿ ⁺ ¹⁾b < a/2ⁿb and
a/2⁽ⁿ ⁺ ¹⁾b/a/2ⁿb = 1/2, so the next number is always half the previous number.
So, we cannot find a smallest positive rational number because there would always be a number smaller than that number if it were divided by half.
Answer:
x = 5
Step-by-step explanation:
The difference between consecutive terms will be equal , then
a₂ - a₁ = a₃ - a₂ , that is
x + 9 - (3x - 2) = 2x + 5 - (x + 9) ← distribute parenthesis on both sides
x + 9 - 3x + 2 = 2x + 5 - x - 9 , simplify both sides
- 2x + 11 = x - 4 ( subtract x from both sides )
- 3x + 11 = - 4 ( subtract 11 from both sides )
- 3x = - 15 ( divide both sides by - 3 )
x = 5
Answer:
The answer is D,
a(n) = 4/5 + 1/6(n- 1)
just took the test :)
Step-by-step explanation:
Answer:
m=4
Step-by-step explanation:
-5m=-20
m= - 20/-5
m=4