Yes the square root of 1/4 is a rational number
Simplifying h(x) gives
h(x) = (x² - 3x - 4) / (x + 2)
h(x) = ((x² + 4x + 4) - 4x - 4 - 3x - 4) / (x + 2)
h(x) = ((x + 2)² - 7x - 8) / (x + 2)
h(x) = ((x + 2)² - 7 (x + 2) - 14 - 8) / (x + 2)
h(x) = ((x + 2)² - 7 (x + 2) - 22) / (x + 2)
h(x) = (x + 2) - 7 - 22/(x + 2)
h(x) = x - 5 - 22/(x + 2)
An oblique asymptote of h(x) is a linear function p(x) = ax + b such that
In the simplified form of h(x), taking the limit as x gets arbitrarily large, we obviously have -22/(x + 2) converging to 0, while x - 5 approaches either +∞ or -∞. If we let p(x) = x - 5, however, we do have h(x) - p(x) approaching 0. So the oblique asymptote is the line y = x - 5.
Answer:
d=13988 or d=1.3988 x 10^4
Step-by-step explanation:
d=(-8)^2+(-118)^2
d=64+13924
d=13988
9514 1404 393
Answer:
d. x-axis
Step-by-step explanation:
Consider a point on curve P and its (nearest) image on curve P'. The midpoint between those points is on the line of reflection. That line is the x-axis.
_____
<em>Additional comment</em>
The curve is symmetrical about the y-axis, so each point on P also has an image point that is its reflection across the origin. The reflection of P could be across both the x- and y-axes, or (equivalently) across the origin. We don't know the meaning of "xy-axis", so we suspect that is a red herring. The best choice here is "x-axis."
The graph is misleading because the year’s interval is not constant.
The first year to the second year, the gap is 1 year; in the second to the
third year, the gap is 2; in the third to the fourth year is 4; and the fourth
to the fifth year is 6.