1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Rama09 [41]
3 years ago
7

HELP high school pre cal

Mathematics
1 answer:
kogti [31]3 years ago
6 0

Answer:

The option A) -4-3i is correct

Therefore the simplified given expression is (-1-6i)+(-3+3i)=-4-3i

Step-by-step explanation:

Given that the expression is (-1-6i)+(-3+3i)

To simplify the given expression as below :

(-1-6i)+(-3+3i)=-1-6i-3+3i

=(-1-3)+(-6i+3i) ( combining the real parts and imaginary parts separately and adding the like terms )

=-4+(-3i)

=-4-3i

(-1-6i)+(-3+3i)=-4-3i

Therefore the simplified given expression is (-1-6i)+(-3+3i)=-4-3i

Therefore the option A) -4-3i is correct

You might be interested in
Find the equation of a straight line R, which passes through (50, 2) and is parallel to the line y + 10 = 2​
Snowcat [4.5K]

Answer:

hii friends are you also follow me and give me brainliest

and so sorry I don't no answer

but you follow me and give me brainliest ok by

6 0
3 years ago
Imagine an experiment having three conditions and 20 subjects within each condition. The mean and variances of each condition ar
xxTIMURxx [149]

Answer:

1. Mean square B= 5.32

2. Mean square E= 16.067

3. F= 0.33

4. p-value: 0.28

Step-by-step explanation:

Hello!

You have the information of 3 groups of people.

Group 1

n₁= 20

X[bar]₁= 3.2

S₁²= 14.3

Group 2

n₂= 20

X[bar]₂= 4.2

S₂²= 17.2

Group 3

n₃= 20

X[bar]₃= 7.6

S₃²= 16.7

1. To manually calculate the mean square between the groups you have to calculate the sum of square between conditions and divide it by the degrees of freedom.

Df B= k-1 = 3-1= 2

Sum Square B is:

∑ni(Ÿi - Ÿ..)²

Ÿi= sample mean of sample i ∀ i= 1,2,3

Ÿ..= general mean is the mean that results of all the groups together.

General mean:

Ÿ..= (Ÿ₁ + Ÿ₂ + Ÿ₃)/ 3 = (3.2+4.2+7.6)/3 = 5

Sum Square B (Ÿ₁ - Ÿ..)² + (Ÿ₂ - Ÿ..)² + (Ÿ₃ - Ÿ..)²= (3.2 - 5)² + (4.2 - 5)² + (7.6 - 5)²= 10.64

Mean square B= Sum Square B/Df B= 10.64/2= 5.32

2. The mean square error (MSE) is the estimation of the variance error (σ_{e}^2 → S_{e} ^{2}), you have to use the following formula:

Se²=<u> (n₁-1)S₁² + -(n₂-1)S₂² + (n₃-1)S₃²</u>

                        n₁+n₂+n₃-k

Se²=<u> 19*14.3 + 19*17.2 + 19*16.7 </u>= <u>  915.8   </u>  = 16.067

                 20+20+20-3                  57

DfE= N-k = 60-3= 57

3. To calculate the value of the statistic you have to divide the MSB by MSE

F= \frac{Mean square B}{Mean square E} = \frac{5.32}{16.067} = 0.33

4. P(F_{2; 57} ≤ F) = P(F_{2; 57} ≤ 0.33) = 0.28

I hope you have a SUPER day!

3 0
3 years ago
The curve
kherson [118]

Answer:

Point N(4, 1)

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right  

Equality Properties

  • Multiplication Property of Equality
  • Division Property of Equality
  • Addition Property of Equality
  • Subtraction Property of Equality<u> </u>

<u>Algebra I</u>

  • Coordinates (x, y)
  • Functions
  • Function Notation
  • Terms/Coefficients
  • Anything to the 0th power is 1
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative of a constant is 0

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<u />\displaystyle y = \sqrt{x - 3}<u />

<u />\displaystyle y' = \frac{1}{2}<u />

<u />

<u>Step 2: Differentiate</u>

  1. [Function] Rewrite [Exponential Rule - Root Rewrite]:                                   \displaystyle y = (x - 3)^{\frac{1}{2}}
  2. Chain Rule:                                                                                                        \displaystyle y' = \frac{d}{dx}[(x - 3)^{\frac{1}{2}}] \cdot \frac{d}{dx}[x - 3]
  3. Basic Power Rule:                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{\frac{1}{2} - 1} \cdot (1 \cdot x^{1 - 1} - 0)
  4. Simplify:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}} \cdot 1
  5. Multiply:                                                                                                             \displaystyle y' = \frac{1}{2}(x - 3)^{-\frac{1}{2}}
  6. [Derivative] Rewrite [Exponential Rule - Rewrite]:                                          \displaystyle y' = \frac{1}{2(x - 3)^{\frac{1}{2}}}
  7. [Derivative] Rewrite [Exponential Rule - Root Rewrite]:                                 \displaystyle y' = \frac{1}{2\sqrt{x - 3}}

<u>Step 3: Solve</u>

<em>Find coordinates</em>

<em />

<em>x-coordinate</em>

  1. Substitute in <em>y'</em> [Derivative]:                                                                             \displaystyle \frac{1}{2} = \frac{1}{2\sqrt{x - 3}}
  2. [Multiplication Property of Equality] Multiply 2 on both sides:                      \displaystyle 1 = \frac{1}{\sqrt{x - 3}}
  3. [Multiplication Property of Equality] Multiply √(x - 3) on both sides:            \displaystyle \sqrt{x - 3} = 1
  4. [Equality Property] Square both sides:                                                           \displaystyle x - 3 = 1
  5. [Addition Property of Equality] Add 3 on both sides:                                    \displaystyle x = 4

<em>y-coordinate</em>

  1. Substitute in <em>x</em> [Function]:                                                                                \displaystyle y = \sqrt{4 - 3}
  2. [√Radical] Subtract:                                                                                          \displaystyle y = \sqrt{1}
  3. [√Radical] Evaluate:                                                                                         \displaystyle y = 1

∴ Coordinates of Point N is (4, 1).

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

4 0
3 years ago
Need help ASAP!!!!!!!
natima [27]

Answer:

A

Step-by-step explanation:

You can subtract normally when the square roots are the same( like in your problem) but the squares stay they same and the numbers on the outside change.

4 0
3 years ago
Read 2 more answers
I need help? Can you please tell me
BaLLatris [955]

Answer:

whats the questun

Step-by-step explanation:

7 0
2 years ago
Other questions:
  • can someone help? I'm getting ready to slit someone's throat, I'm so irritated. I have 7 of these to do. ​
    13·1 answer
  • What is x= 2.3 if you evaluate 8x for the value?
    8·2 answers
  • ann is grouping 38 rocks she can put them into groups of 10 rocks or as single rocks what are the differnet ways ann can group t
    6·1 answer
  • Find the new price for the markup given. Round to the nearest cent if necessary.
    8·1 answer
  • May someone help me out with this please I seriously need someone to help me
    10·1 answer
  • What is the value of n so that the equation has one solution? <br><br> 2x squared-4x+n=0
    5·2 answers
  • Caleb types 100 words in 5 minutes. What is the unit rate? 100 words to 5 minutes 5 minutes per 100 words 20 words per minute 1
    5·2 answers
  • When multiplying two negative intergers what is the sign of the product
    13·1 answer
  • What is the following product? ^3Vx^2•^4VX^3
    12·1 answer
  • If the coordinates of the endpoints of a diameter of the circle are known, the equation of a circle can be
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!