Answer:
a) The gradient of a function is the vector of partial derivatives. Then

b) It's enough evaluate P in the gradient.

c) The directional derivative of f at P in direction of V is the dot produtc of
and v.
![\nabla f(P) v=(-4,-4)\left[\begin{array}{ccc}2\\3\end{array}\right] =(-4)2+(-4)3=-20](https://tex.z-dn.net/?f=%5Cnabla%20f%28P%29%20v%3D%28-4%2C-4%29%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%5C%5C3%5Cend%7Barray%7D%5Cright%5D%20%3D%28-4%292%2B%28-4%293%3D-20)
d) The maximum rate of change of f at P is the magnitude of the gradient vector at P.

e) The maximum rate of change occurs in the direction of the gradient. Then

is the direction vector in which the maximum rate of change occurs at P.
Injective- (one-to-One)
so
Replace the f(x) with y
10-4x
Interchange the variables
x=10-4y
Solv for y.
y= 5/2 - x/4
So solve for y and replace with f-1 (x).
and it equals
f-1 (x)=5/2- x/4
6.05 x 10^5 would be your answer.
I hope this helps!
Answer:
D)There are limited resources and unlimited wants and demands.
Step-by-step explanation:
Answer:
Se vendieron 81 boletos de niños y 63 boletos de adultos.
Step-by-step explanation:
La cantidad de boletos vendidos es igual a:
(1)
En donde <em>a </em>es por adultos y <em>n</em> por niños
A su vez, el dinero gastado equivale:
(2)
Resolviendo la ecuación (1) para <em>a:</em>
(3)
Introduciendo (3) en la ecuación (2) tenemos:


Ahora podemos calcular el numero de boletos de adultos vendidos introduciendo <em>n</em> en la ecuación (3):

Entonces, se vendieron 81 boletos de niños y 63 boletos de adultos.
Espero que te sea de utilidad!