Answer:
1 hr 20 min.
Step-by-step explanation:
X*a = 244 is equation (1)
x+a = 2 is equation (2)
Solve equation (2) for 'a' to get
x+a = 2
a = 2-x
Call this equation (3)
We will plug equation (3) into equation (1)
x*a = 244
x*(a) = 244
x*(2-x) = 244
Notice how the 'a' is replaced with an expression in terms of x
Let's solve for x
x*(2-x) = 244
2x-x^2 = 244
x^2-2x+244 = 0
If we use the discriminant formula, d = b^2 - 4ac, then we find that...
d = b^2 - 4ac
d = (-2)^2 - 4*1*244
d = -972
indicating that there are no real number solutions to the equation x^2-2x+244 = 0
So this means that 'x' and 'a' in those two original equations are non real numbers. If you haven't learned about complex numbers yet, then the answer is simply "no solution". At this point you would stop here.
If you have learned about complex numbers, then the solution set is approximately
{x = 1 + 15.588i, a = 1 - 15.588i}
which can be found through the quadratic formula
Note: it's possible that there's a typo somewhere in the problem that your teacher gave you.
The answer to the question What is the ratio of 4.3 is 4:3
QqqqqqwqqwffdhvdhbxeZ chiita hexhhrdbbb fc gvcgxehnbcgbvb hnohvb mloibddgzzc loco ducrxbjv
Answer:
The information we need is that the angle between the sides (that is, angle TVU for triangle TVU and angle WVX for triangle WVX) need to be equal.
These angles are vertically opposite angles, because they are formed by two lines crossing, so these angles are equal.
Step-by-step explanation:
The SAS Congruence Theorem says that if two triangles have 2 equal sides and the angle between these sides are also equal, the triangles are congruent.
In this question, we know that the sides UV and VW are congruent, as V is the midpoint of UW. We also know that TV = VX, so now we have two equal sides for each triangle.
The information we need is that the angle between the sides (that is, angle TVU for triangle TVU and angle WVX for triangle WVX) need to be equal.
These angles are vertically opposite angles, because they are formed by two lines crossing, so these angles are equal.
Now we can conclude that the triangles are congruent.