Answer:
B. A precipitate will form since Q > Ksp for calcium oxalate
Explanation:
Ksp of CaC₂O₄ is:
CaC₂O₄(s) ⇄ Ca²⁺ + C₂O₄²⁻
Where Ksp is defined as the product of concentrations of Ca²⁺ and C₂O₄²⁻ in equilibrium:
Ksp = [Ca²⁺][C₂O₄²⁻] = 2.27x10⁻⁹
In the solution, the concentration of calcium ion is 3.5x10⁻⁴M and concentration of oxalate ion is 2.33x10⁻⁴M.
Replacing in Ksp formula:
[3.5x10⁻⁴M][2.33x10⁻⁴M] = 8.155x10⁻⁸. This value is reaction quotient, Q.
If Q is higher than Ksp, the ions will produce the precipitate CaC₂O₄ until [Ca²⁺][C₂O₄²⁻] = Ksp.
Thus, right answer is:
<em>B. A precipitate will form since Q > Ksp for calcium oxalate</em>
<em></em>
By decreasing n we can increase presure because decrease in n will shift equilibrium to either forward or reverse direction
I think your answer is A not sure tho
Answer:
Measuring with a ruler and using final volume minus initial volume
Explanation:
You can measure the volume of a geometric object by measuring its sides with a ruler and calculating the volume according to the corresponding formula for each object. For example, for a rectangular prism it would be

You can also measure the volume of an object by measuring how much water it displaces. To do this you have to fill a measuring cylinder with enough water for the object to be completely submerged and take note of the volume. Then, add the object and note again the volume of the water+object. The difference between both is the volume of the object.

The advantage of the second method is that it can be used for objects with irregular shapes as long as they do not float.