Answer:
Experiments to determine mechanisms involve looking at indirect evidence to help support or disprove a proposed mechanism.
Most intermediates are not typically isolated to determine reaction mechanisms.
Carbocations are very reactive and are typically not isolated for analysis.
Scientists can prove that a specific mechanism exists.
Evidence of intermediates sometimes can be seen using techniques such as nuclear magnetic resonance spectroscopy
Explanation:
The study of reaction mechanism and chemical kinetics often form the main thrust of study in organic, inorganic and physical chemistry.
We often want to know the actual processes involved in the conversion of one specie to another. Unfortunately, this information may have to be obtained indirectly by certain chemical reactions or by the use of new instrumental methods such as nuclear magnetic resonance spectroscopy.
Many organic reactions have carbocation intermediates. These carbocations are relatively short-lived and are transient intermediates which are rarely isolated unless they are isolated in a molecular cage using a macromolecule or in superacids.
By intensive study, scientists can proof or disprove the authenticity of any proposed mechanism.
We must know that a transition state has partial bonds. It is often an extremely short-lived specie which cannot be isolated.
Answer:
Some serious diseases like anthrax is also caused in animals by the microbes. Microbes also cause diseases of plants like blights in potatoes, sugarcanes, oranges etc. They also reduce the yield. Microbes grow on food products and render them unfit for consumption.
Explanation:
Answer: A mass of 124457.96 g ammonia is produced by reacting a 450 L sample of nitrogen gas at a temperature of 450 K and a pressure of 300 atm.
Explanation:
Given: Volume = 450 L
Temperature = 450 K
Pressure = 300 atm
Using ideal gas equation, moles of nitrogen are calculated as follows.
PV = nRT
where,
P = pressure
V = volume
n = no. of moles
R = gas constant = 0.0821 L atm/mol K
T = tempertaure
Substitute values into the above formula as follows.

According to the given equation, 1 mole of nitrogen forms 2 moles of ammonia. So, moles of ammonia formed by 3654.08 moles of nitrogen is as follows.

As moles is the mass of substance divided by its molar mass. So, mass of ammonia (molar mass = 17.03 g/mol) is as follows.

Thus, we can conclude that a mass of 124457.96 g ammonia is produced by reacting a 450 L sample of nitrogen gas at a temperature of 450 K and a pressure of 300 atm.
Answer:
Its B I just took the test and got a 100%
Explanation: