Forty-five and twenty-three hundredths.
In general, with decimals, the first place value after the decimal is read as a tenth, the second is read as a hundredth, the third is read as a thousandth, and so on. In front of the decimal, we know that 4 is in the tens place and 5 is in the ones place, so we say forty-five. Past the decimal, 2 is in the tenths place (think about how 2/10 = .2, which is "two-tenths") and 3 is in the hundredths place (think about how 23/100 = .23). You read the number after the decimal like normal ("twenty-three," "two-hundred fifteen," etc), then you add the place ("tenths, hundredths, ten-thousands") at the very end.
In order to utilize the graph, first you have to distinguish which graph accurately pertains to the two functions.
This can be done by rewriting the equations in the form y = mx + b which can be graphed with ease; where m is the slope and b is the y intercept.
-x^2 + y = 1
y = x^2 + 1
So this will be a basic y = x^2 parabola where the center intercepts on the y axis at (0, 1)
-x + y = 2
y = x +2
So this will be a basic y = x linear where the y intercept is on the y axis at (0, 2)
The choice which depicts these two graphs correctly is the first choice. The method to find the solutions to the system of equations by using the graph is by determining the x coordinate of the points where the two graphed equations intersect.
In both cases you may well benefit from graphing the functions.
Do you recognize f(x) = (x + 1)^2 - 1 as a quadratic function, whose graph is that of a parabola that opens up? By comparing this to y = a(x-h)^2 + k, we see that a=1, h= -1 and k = -1. The vertex is at (h,k), which here is the point (-1, -1). This is the minimum value of the function. Thus, the range of this function is [-1, infinity).
Now for the function f(x) = 7x - 11: This is a linear function whose graph is (surprise!) a straight line. When x increases, y increases, without limits to either. Similarly, when x decreases, y decreases.
Thus the range includes all real numbers: (-infinity, infinity).
Answer:
1.) mean
2.) H0 : μ = 64
3.) 0.0028
4) Yes
Step-by-step explanation:
Null hypothesis ; H0 : μ = 64
Alternative hypothesis ; H1 : μ < 64
From the data Given :
70; 45; 55; 60; 65; 55; 55; 60; 50; 55
Using calculator :
Xbar = 57
Sample size, n = 10
Standard deviation, s = 7.14
Test statistic :
(xbar - μ) ÷ s/sqrt(n)
(57 - 64) ÷ 8 / sqrt(10)
Test statistic = - 2.77
Pvalue = (Z < - 2.77) = 0.0028 ( Z probability calculator)
α = 10% = 0.1
Reject H0 ; if P < α
Here,
P < α ; Hence, we reject the null