Molar solubility is number of moles of the solute that can be dissolved per liter of solution before the solution becomes saturated.
The molar solubility of lead(ii) chloride with ksp value of 2.4 × 10e4 can be solve as:
Ksp = s2 = 2.4 × 10e4
s2 = 2.4 × 10e4
s = √(2.4 × 10e4)
s = 154.9 mol/L
<span>(1) CH3CHCHCH3.................</span>
Answer:
50cm
Explanation:
because thats the only thing i got
Molarity: M = #moles of solute / liters of solution
# moles = mass / molar mass
Molar mass calculation
Barium hydroxide = Ba (OH)2
Atomic masses
Ba = 137.4 g/mol
O=16 g/mol
H=1 g/mol
Molar mass of Ba (OH)2 = 137.4 g/mol + 2*16g/mol + 2*1 g/mol = 171.4 g/mol
# mol = 25.0g/171.4 g/mol = 0.146 mol
For the volume of water use the fact that the density is 1g/ml., so 120 g = 120 ml = 0,120 liters.
M = 0.146mol / 0.120 liters = 1.22 mol/liter