Answer:- The hydroxide ion concentration of the solution is
.
Solution:- The formula used to calculate pOH from hydroxide ion is:
![pOH=-log[OH^-]](https://tex.z-dn.net/?f=pOH%3D-log%5BOH%5E-%5D)
When pOH is given and we are asked to calculate hydroxide ion concentration then we multiply both sides by negative sign and take antilog and what we get on doing this is:
![[OH^-]=10^-^p^O^H](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D10%5E-%5Ep%5EO%5EH)
pOH is given as 5.71 and we are asked to calculate hydrogen ion concentration. Let's plug in the given value in the formula:
![[OH^-]=10^-^5^.^7^1](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D10%5E-%5E5%5E.%5E7%5E1)
= 0.00000195 or 
So, the hydroxide ion concentration of the solution is
.
Well it’s the first answer couches
I believe the answer is C) both
Hope this helps
Answer:
2Cl+2e -->2Cl^-
Explanation:
reduction is the gain of electrons and this is the only option which fits the definition.
Given :
Number of moles of CHF₃ is 1.7 .
Solution :
We know, 1 mole of any complex contains 6.022 × 10²³ molecules.
Let, 1.7 moles of CHF₃ contains n numbers of molecules.
So, n = 1.7 × 6.022 × 10²³ molecules
n = 10.2374 × 10²³ molecules
n = 1.0237 × 10²³ molecules
Hence, this is the required solution.