<span>The proton differs from the electron in sign although they have the same value. Like the electron, a proton will gain 215 electron-volts of eV in Kinetic energy. So 1.602Ă—10^-19 J * 215 = 344.43 * 10^(-19) J.
But K. E. = mv^2 / 2, so v^2 = 2 * K.E/m. The mass of a proton is 1.673 * 10^-27 kg. So v = âš(2 * 344.43 * 10^(-19))/1.673Ă—10^-27 = 688.86 * 10^(-19)/1.673Ă—10^(-27) = 411.75 * 10^(-19-(-27)) = âš411.75 * 10^(8) = 202196.56
Also for the electron we have v^2 = 2 * K.E/m but here mass, m, = 9.109 * 10^-31 kg. So we have v = âš(2 * 344.43 * 10^(-19)) / 9.109 * 10^-31 = 688.86 * 10^(-19)/ 9.109 * 10^-31 = 75.624 * 10^(-19 - (-31)) = 75.624 * 10^(21) and v = 2.749 * 10^11</span>
Answer:
y = 33.93 10⁵ m
Explanation:
This is an interference exercise, for the contributory interference is described by the expression
d sin θ = m λ
let's use trigonometry for the angle
tan θ = y / L
how the angles are small
tan θ = sin θ / cos tea = sin θ
we substitute
sin θ = y / L
d y / L = m λ
y = m λ L / d
the light fulfills the relation of the waves
c = λ f
λ = c / f
λ = 3 10⁸ /375
λ = 8 10⁵ m
first order m = 1
let's calculate
y = 1 8 10⁵ 4030 10-9 / 950 10-9
y = 33.93 10⁵ m
Answer:
Different
Explanation:
The hollow one will expand even more making it have a larger volume then the solid one so they are different