F = ma
500 = m x 15
m = 33.33 kg
Answer:
Explanation:
Given that,
A point charge is placed between two charges
Q1 = 4 μC
Q2 = -1 μC
Distance between the two charges is 1m
We want to find the point when the electric field will be zero.
Electric field can be calculated using
E = kQ/r²
Let the point charge be at a distance x from the first charge Q1, then, it will be at 1 -x from the second charge.
Then, the magnitude of the electric at point x is zero.
E = kQ1 / r² + kQ2 / r²
0 = kQ1 / x² - kQ2 / (1-x)²
kQ1 / x² = kQ2 / (1-x)²
Divide through by k
Q1 / x² = Q2 / (1-x)²
4μ / x² = 1μ / (1 - x)²
Divide through by μ
4 / x² = 1 / (1-x)²
Cross multiply
4(1-x)² = x²
4(1-2x+x²) = x²
4 - 8x + 4x² = x²
4x² - 8x + 4 - x² = 0
3x² - 8x + 4 = 0
Check attachment for solution of quadratic equation
We found that,
x = 2m or x = ⅔m
So, the electric field will be zero if placed ⅔m from point charge A, OR ⅓m from point charge B.
Answer:
D...............................
Answer:
Rifle Momentum=7.77kg*m/s v'= 1.554 m/s
Explanation:
a) m1v1 + m2v2 = m1v1' + m2v2'
0+0 = 0.03*259 + P(rifle momentum)
solve for P
p= 7.77kg*m/s
b) 7.77= 5*v'
v'= 1.554 m/s
The work done is 
Work Done = Change in Kinetic Energy (ΔKE)
<u>Explanation</u>
In first 1 hour it travels 72 km
So, Velocity = 
or, Initial Velocity (u) = 20 m/s
Similarly for the next hour it covers 90 km
So, Velocity = 
or, Final Velocity (v) = 20 m/s
Work done = Change in Kinetic Energy (ΔKE)
Work done = ΔKE = 
ΔKE = 
=
= 281250 joule
= 