The ratio of concentration of ionized acid to the initial concentration of acid multiplied by 100 will give the percent ionization of a weak acid in water increases as the concentration of acid decreases.
Explanation:
Percent ionization is used for quantifying the number of ions present in the weak acid when dissolved in a solution. So it is similar to the pKa value. The percent ionization value can be determined as negative log of dissociation constant. Also the as the number of ions increases in weak acid, the concentration of acid will be decreasing . It can be calculated using the formula for percent ionization as follows:

As the water volume or concentration increases, the acid will get diluted much more thus leading to decrease in the concentration of acid.
So the ratio of concentration of ionized acid to the initial concentration of acid multiplied by 100 will give the percent ionization of a weak acid in water increases as the concentration of acid decreases.
The angle of inclination is calculated using sin
function,
sin θ = 5 m / 20 m = 0.25
θ = 14.4775°
<span>The net force exerted is then calculated:
F net = m g sin θ = 20 * 9.8 * 0.25 </span>
F net = 49N
<span>Work is product of net force and distance:
W = F net * d = 49 * 20 </span>
<span>Work = 980 J </span>
Here we apply conservation of linear momentum. The momentum of the truck with cargo and without cargo remains constant. That is,
.
Here
are initial mass and velocity.
are final mass and velocity. Here
and
.
The velocity of the truck be after its cargo is taken off is

Weight doesn't really mean much as it just means gravity the bigger a space object is the more force it has to pull on something since the moon is smaller than the earth then it has less gravity and then less weight on scales.
Earth's gravity and the satellite's velocity keeps it so that it stays in orbit. (there is a more complicated side, too...)