Answer:
<em>The final speed of the vehicle is 36 m/s</em>
Explanation:
<u>Uniform Acceleration</u>
When an object changes its velocity at the same rate, the acceleration is constant.
The relation between the initial and final speeds is:

Where:
vf = Final speed
vo = Initial speed
a = Constant acceleration
t = Elapsed time
The vehicle starts from rest (vo=0) and accelerates at a=4.5 m/s2 for t=8 seconds. The final speed is:


The final speed of the vehicle is 36 m/s
Answer:
1. <--> A.
2. <--> C.
3. <--> D
4. <--> B.
explanation: i know my science!
Answer:
The distance traveled by the woman is 34.1m
Explanation:
Given
The initial height of the cliff
yo = 45m final, positition y = 0m bottom of the cliff
y = yo + ut -1/2gt²
u = 20.0m/s initial speed
g = 9.80m/s²
0 = 45.0 + 20×t –1/2×9.8×t²
0 = 45 +20t –4.9t²
Solving quadratically or by using a calculator,
t = 5.69s and –1.61s byt time cannot be negative so t = 5.69s
So this is the total time it takes for the ball to reach the ground from the height it was thrown.
The distance traveled by the woman is
s = vt
Given the speed of the woman v = 6.00m/s
Therefore
s = 6.00×5.69 = 34.14m
Approximately 34.1m to 3 significant figures.
Answer:
Fnet = F√2
Fnet = kq²/r² √2
Explanation:
A exerts a force F on B, and C exerts an equal force F on B perpendicular to that. The net force can be found with Pythagorean theorem:
Fnet = √(F² + F²)
Fnet = F√2
The force between two charges particles is:
F = k q₁ q₂ / r²
where
k is Coulomb's constant, q₁ and q₂ are the charges, and r is the distance between the charges.
If we say the charge of each particle is q, then:
F = kq²/r²
Substituting:
Fnet = kq²/r² √2
Answer:
5.38 m/s^2
Explanation:
NET force causing the object to accelerate = 50 -10 = 40 N
Mass of the object = 73 N / 9.81 m/s^2 = 7.44 kg
F = ma
40 = 7.44 * a a = 5.38 m/s^2