Answer:
Speed of larger piece is 
Explanation:
We apply the principle of conservation of momentum.
The watermelon is initially at rest. The initial momentum = 0 kg m/s in all directions.
After the collision,
Vertical momentum = momentum of piece in y-direction + y-component of momentum of larger piece = 
Here,
is the y-component of velocity of larger piece.
This is equal to 0, since the initial momentum is 0.

Horizontal momentum = momentum of piece in x-direction + x-component of momentum of larger piece = 
Here,
is the x-component of velocity of larger piece.
This is also equal to 0, since the initial momentum is 0.

The velocity of the larger piece,
, is the resultant of
and
. Since they are mutually perpendicular,


Answer:You had a hard one. so for the 3 one the egg will not Evan float at all so no it will not
Explanation:a egg is a fragile thing that can not float.
Velocity vs. time graph shows the acceleration as a slope whereas displacement vs. time graph shows the velocity as a slope. So, the given statement is false.
Answer: Option B
<u>Explanation:</u>
To understand the acceleration graphically, consider the x axis of the graph as the run and the y axis as the velocity rise. Now, as we all know that,

We can estimate this through the graph. let's draw the motion of an object with time if it's velocity is changing in every second by 4 m/s. Now if we draw this on graph, we will see that there is a slope between the two corresponding values of time and velocity. This slope defines the acceleration for the object with time.
Now, in the same way, if we draw a distance and time graph respective to the y and x axis; we'll get a slope which defines the velocity of the object i.e. change in distance with time.
Hence, with a velocity vs time graph, we get the slope for acceleration whereas with the distance and time graph, we get the slope for velocity. So both the cases, we see there is no velocity slope on an acceleration and time graph. Hence the statement is false.
Answer:
-1.03 m/s²
Explanation:
Acceleration: This can be defined as the rate of change of velocity. The S. I unit of acceleration is m/s².
Mathematically, acceleration is expressed as
a = (v-u)/t ........................ Equation 1
Where a = acceleration, v = final velocity, u = initial velocity, t = time.
Given: u = 13.60 m/s, v = 7.20 m/s t = 6.2 s.
Substituting into equation 2
a = (7.20-13.60)/6.2
a = -6.4/6.2
a = -1.03 m/s²
Note: a is negative because, the hockey puck is decelerating.
Hence the average acceleration = -1.03 m/s²