Answer
given,
wavelength (λ)= 500 n m
thickness of film= 10⁻⁴ cm
refractive index = μ = 1.375
distance traveled is double which is equal to 2 x 10⁻⁴ cm
a) Number of wave


N = 2.91
N = 3
b) phase difference is equal to
Reflection from the first surface has a 180° (½λ) phase change.
There is no phase change for the 2nd surface reflection and there is no phase difference for the 2nd wave having traveled an exact whole number of waves.
net phase difference = 
= 270°
Answer:
750 force
Explanation:
I have never worked with force but I can guess using the formula. 1500, which is the mass, multiplied by the acceleration, 0.5, would equal 750 force, if being applied by the equation listed, Force= mass×acceleration
Answer:
62 N
Explanation:
Sum of the forces on the toolbox:
∑F = ma
T − mg = ma
T = mg + ma
T = m (g + a)
T = (5.0 kg) (9.8 m/s² + 2.5 m/s²)
T = 61.5 N
Rounded to two significant figures, the force exerted by the rope is 62 N.
The top of the trajectory is the point where it changes from rising to falling. At that exact instant, its vertical speed is zero.
Time = distance/speed
Time = 8•10^14m / 3•10^8m/s
Time = about 2.7•10^6 seconds.
That's about 31 Earth days.