Answer:
They two waves has the same amplitude and frequency but different wavelengths.
Explanation: comparing the wave equation above with the general wave equation
y(x,t) = Asin(2Πft + 2Πx/¶)
Let ¶ be the wavelength
A is the amplitude
f is the frequency
t is the time
They two waves has the same amplitude and frequency but different wavelengths.
(a) The net flux through the coil is zero.
In fact, the magnetic field generated by the wire forms concentric circles around the wire. The wire is placed along the diameter of the coil, so we can imagine as it divides the coil into two emisphere. Therefore, the magnetic field of the wire is perpendicular to the plane of the coil, but the direction of the field is opposite in the two emispheres. Since the two emispheres have same area, then the magnetic fluxes in the two emispheres are equal but opposite in sign, and so they cancel out when summing them together to find the net flux.
(b) If the wire passes through the center of the coil but it is perpendicular to the plane of the wire, the net flux through the coil is still zero.
In fact, the magnetic field generated by the wire forms concentric lines around the wire, so it is parallel to the plane of the coil. But the flux is equal to

where

is the angle between the direction of the magnetic field and the perpendicular to the plane of the coil, so in this case

and so the cosine is zero, therefore the net flux is zero.
So there is a decimal after the last zero and it looks like this 5098000. You have to move the decimal point six back to get in between the five and the zero which looks like this 5.098000
<span>Scientific notation is the way that scientists easily handle very large numbers or very small numbers. For example, instead of writing 0.0000000056, we write 5.6 x 10^<span>9</span>.</span>
Being that we moved the decimal six places back the answer is 5.098 x 10^6