Start by balancing the hydrogen atoms. There are 9 on the reactants side and 2 on the products side. The least common multiple of 9 and 2 is 18, so the coefficient for C5H9O should be 2 and the coefficient for H2O should be 9.
Next, balance the carbon atoms. After giving C5H9O a coefficient of 2, there are 2*5, or 10 carbon atoms on the reactants side. There is only 1 carbon on the products side. The least common multiple of 1 and 10 is 10, so the coefficient of C5H9O remains as 2 and the coefficient for CO2 becomes 10.
Lastly, balance the oxygen atoms. With C5H9O having a coefficient of 2, there are 4 oxygen atoms on the reactants side. With CO2 having a coefficient of 10 and H2O having a coefficient of 9, there are 29 oxygen atoms on the products side. Here, you balance by changing only the coefficient of O2, which currently provides 2 oxygen atoms to the reactants side. 2 of the 29 oxygen atoms are covered by C5H9O, so the O2 needs to cover for the other 27. Every mole of O2 has 2 oxygen atoms, so the coefficient should be 27/2, or 13.5. We don't want decimals in the reaction, so multiply all of the coefficients by two. This gives the balance reaction:
4C5H9O + 27O2 --> 20CO2 + 18H2O
Hello user, you did not add a picture of an attachment to enable me help you solve this problem. Please check the attachment I added i believe it is the question that needs to be solved.
Explanation:
1. In the first column
<u>INCREASE CONCENTRATION</u>: these are the items that needs to be placed in this bin
a. Add drink mix solid to a diluted mixture of drink mix in pure water
b. Add drink mix solution to a diluted mixture of drink mix in pure water
c. Add drink mix solid to pure drink mix solution
d Evaporate water from a diluted mixture of drink mix in pure water
e Evaporate water from pure drink mix solution
2. The items below are what should be placed in this bin,<u>DECREASE CONCENTRATION:</u>
a. Add water to a diluted mixture of drink mix in pure water
b. Add water to pure drink mix solution
3. These items here should be placed here. <u>DOES NOT AFFECT CONCENTRATION:</u>
a. Add pure drink mix solution to pure drink mix solution
b. Drain the pure drink mix solution
c. Drain the diluted mixture
Answer:
Total pressure at equilibrium is 0.2798atm.
Explanation:
For the reaction:
H₂S(g) ⇄ H₂(g) + S(g)
Kp is defined as:

If initial pressure of H₂S is 0.150 atm, equilibrium pressures are:
H₂S(g): 0.150atm - x
H₂(g): x
S(g): x
Replacing in Kp:

X² = 0.1251 - 0.834X
X² + 0.834X - 0.1251 = 0
Solving for X:
X = -0.964 → False solution: There is no negative pressures
X = 0.1298
Thus, pressures are:
H₂S(g): 0.150atm - 0.1298atm = <em>0.0202atm</em>
H₂(g): <em>0.1298atm</em>
S(g): <em>0.1298atm</em>
Thus, total pressure in the container at equilibrium is:
0.0202atm + 0.1298atm + 0.1298atm = <em>0.2798atm</em>
Answer:
737.52 mL de agua
Explanation:
En este caso solo debes usar la expresión de molaridad de una solución la cual es:
M = moles / V
Donde:
V: Volumen de solución.
Como queremos saber la cantidad de agua, queremos saber en otras palabras cual es la cantidad de solvente que se utilizó para preparar los 800 mL de disolución.
Una disolución se prepara con un soluto y solvente. El soluto lo tenemos, que es el nitrato de plata. Con la expresión de arriba, calculamos los moles de soluto, y luego su masa. Posteriormente, calculamos el volumen con la densidad, y finalmente podremos calcular el solvente de esta forma:
V ste = Vsol - Vsto
Primero calcularemos los moles de soluto:
moles = M * V
moles = 2 * 0.800 = 1.6 moles
Con estos moles, se calcula la masa usando el peso molecular reportado que es 169.87 g/mol:
m = moles * PM
m = 1.6 * 169.87 = 271.792 g
Ahora usando el valor de la densidad, calcularemos el volumen de soluto empleado:
d = m/V
V = m/d
V = 271.792 / 4.35
V = 62.48 mL
Finalmente, la cantidad de agua necesaria es:
V agua = 800 - 62.48
V agua = 737.52 mL
<span>A.H2O = water, so it is a liquid at room temperatures (melting point = 0C) and melting point must be below 20C
B.HCl = A gas at room temperatures, so melting point (-114C) is definitely lower than 20C.
Melting points of the aqueous solution (solution in water) at different concentrations are all below that of water, i.e. 0C.
C.CH4 = A gas at room temperatures, so melting point (-182C) must be below 20C.
D.MgCl2 = A white powdery solid at room temperatures, so its melting point (714C) must be above 20C (So this is the only one among the four choices that melts above 20 ° C).</span>