The 2 hormones are insulin & glucagon.
A hormone will only act on a part of the body it 'fits'. A hormone can be thought of as a key, and its target site ( i.e an organ) has specially shaped locks on the cell walls.
If the hormone fits, then it will work.
The hormone can set off a cascade of other singling pathways in the cell to cause an immediate effect ( for instance, insulin signaling leads to a rapid uptake of glucose in muscle cells)
The endocrine system is a tightly regulated system that keeps the hormones and their effects at just the right level. One way this is achieved is through ' feedback loops'. The release of hormones is regulated by other hormones, proteins or neuronal signals.
The released hormone then has its effect on other organs. This effect on the organ feeds back to the original signal to control any further hormone release.
btw- found all this info @ the Better Health channel, an australian government health website , so if your still confused by my answer, check out this website
www.betterhealth.vic.gov.au/health/conditionsandtreatments/hormonal-endocrine-system
B. We are in the cenzoic era so what previously had happen to cause the life we live today was a huge mass extinction.... hope this helps!!
Answer:
instantaneous rate would be the term.
Answer: 


Explanation:
Entropy is the measure of randomness or disorder of a system.
A system has positive value of entropy if the disorder increases and a system has negative value of entropy if the disorder decreases.
1. 
As 4 moles of gaseous reactants are changing to 2 moles of gaseous products, the randomness is decreasing and the entropy is negative
2. 
As 9 moles of gaseous reactants are changing to 10 moles of gaseous products, the randomness is increasing and the entropy is positive.
3. 
As 1 mole of solid reactants is changing to 2 moles of gaseous products, the randomness is increasing and the entropy is positive.
4. 
As 4 moles of gaseous reactants is changing to 5 moles of gaseous products, the randomness is increasing and the entropy is positive
5. 
As 4 moles of gaseous reactants is changing to 1 moles of gaseous products, the randomness is decreasing and the entropy is negative.
Mexican Texas<span> is the historiographical name used to refer to the era of </span>Texan<span> history between 1821 and 1836, </span>when it was part<span> of </span>Mexico<span>. </span>Mexico gained independence<span> from Spain in 1821 in </span>its war<span> of</span>independence<span>. Initially, </span>Mexican Texas<span> operated very similarly to Spanish </span>Texas<span>.</span>