Answer:
b) At equilibrium, equal amounts of products and reactants are present.
Explanation:
At equilibrium , the ratio of product of concentration of products and product of concentration of reactants is constant .
A + B ⇄ C + D
[C] [ D] / [ A ] [ B ] = Constant
So, the statement ( b ) is false .
All other statements are true .
Answer: Volume occupied by given neon sample at standard condition is 123.84 L.
Explanation:
Given:
= 105 L,
,
= 985 torr
At standard conditions,
= 273 K,
= 760 K,
= ?
Formula used to calculate the volume is as follows.

Substitute the values into above formula as follows.

Thus, we can conclude that volume occupied by given neon sample at standard condition is 123.84 L.
You are given two beakers, distilled water, two hot plates, two thermometers and salt. These materials are enough in order to test the effect of salt in the boiling point water. To do this, you set up two beakers. In one of the beakers, you add pure distilled water and nothing else. For the other beaker, you put a solution of salt and water. You place these beakers on separate hot plates and place inside the beakers the thermometers. You heat these substances until they boil and then you measure the boiling points of the substances. You would observe that the boiling point of the solution would have a higher boiling point than the pure liquid.
A wave is a disturbance that carries energy from one place to another. Matter is NOT carried with the wave! A wave can move through matter (a medium). If it must have a medium, it is called a mechanical wave.
The given sentence is part of a longer question.
I found this question with the same sentence. So, I will help you using this question:
For the reaction N2O4<span>(g) ⇄ 2NO</span>2(g), a reaction mixture at a certain temperature initially contains both N2O4 and NO2 in their standard states (meaning they are gases with a pressure of 1 atm<span>). If </span>Kp = 0.15, which statement is true of the reaction mixture before
any reaction occurs?
(a) Q = K<span>; The reaction </span>is at equilibrium.
(b) Q < K<span>;
The reaction </span>will proceed to
the right.
(c) Q > K<span>; The reaction </span>will proceed to the left.
The answer is the option (c) Q > K<span>; The reaction will proceed to the </span>left,
since Qp<span> = </span>1<span>, and 1 > 0.15.</span>
Explanation:
Kp is the equilibrium constant in term of the partial pressures of the gases.
Q is the reaction quotient. It is a measure of the progress of a chemical reaction.
The reaction quotient has the same form of the equilibrium constant but using the concentrations or partial pressures at any moment.
At equilibrium both Kp and Q are equal. Q = Kp
If Q < Kp then the reaction will go to the right (forward reaction) trying to reach the equilibrium,
If Q > Kp then the reaction will go to the left (reverse reaction) trying to reach the equilibrium.
Here, the state is that both pressures are 1 atm, so Q = (1)^2 / 1 = 1.
Since, Q = 1 and Kp = 0.15, Q > Kp and the reaction will proceed to the left.