The Nernst equation allows us to predict the cell potential for voltaic cells under conditions other than the standard conditions of 1M, 1 atm, 25°C. The effects of different temperatures and concentrations may be tracked in terms of the Gibbs energy change ΔG. This free energy change depends upon the temperature & concentrations according to ΔG = ΔG° + RTInQ where ΔG° is the free energy change under conditions and Q is the thermodynamic reaction quotient. The free energy change is related to the cell potential Ecell by ΔG= nFEcell
so for non-standard conditions
-nFEcell = -nFE°cell + RT InQ
or
Ecell = E°cell - RT/nF (InQ)
which is called Nernst equation.
Answer:
24 is the correct anwer
this the anwer text this u no
1 kilo joule = 0.239006 calories
134 kilo joule = 134 x 0.239006
= 32.026804 calories
Answer:
B. water displacement is used "graduated cylinder is filled with water (100 mL) and the object is then put inside. ... If the new water level is (120 mL) we now know that the object has a volume of 20 mL."
Explanation: