I always remembered the differences by Mitosis sounds like My Toes Is. Which means its body cells reproducing.
And Meiosis is My overies. Which is sex cells reproducing.
Mitosis - The body cell's nucleus makes a copy of its chromosomes. The Chromotids are then pulled to the poles of the cell and split in half, the cell then divides in half into two new cells. Each cell has one pair of chromosomes each.
Meiosis - The sex cells nucleus makes a copy of each chromosome same as before. But then the similar chromosomes group up and swap parts with each other. Making completely new chromosomes. They then split in half again, making two new cells with two different pairs of chromosomes. Which then split apart Once more creating 4 new cells (From the original one) Each with completely random chromosomes.
<u>Answer:</u> The expression for equilibrium constant is ![K_{eq}=\frac{[HOCl]^2}{[H_2O][Cl_2]^2}](https://tex.z-dn.net/?f=K_%7Beq%7D%3D%5Cfrac%7B%5BHOCl%5D%5E2%7D%7B%5BH_2O%5D%5BCl_2%5D%5E2%7D)
<u>Explanation:</u>
Equilibrium constant is defined as the ratio of concentration of products to the concentration of reactants each raised to the power their stoichiometric ratios. It is expressed as 
For the general chemical equation:

The expression for
is given as:
![K_c=\frac{[C]^c[D]^d}{[A]^a[B]^b}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BC%5D%5Ec%5BD%5D%5Ed%7D%7B%5BA%5D%5Ea%5BB%5D%5Eb%7D)
For the given chemical reaction:

The expression for
is given as:
![K_{eq}=\frac{[HOCl]^2[HgO.HgCl_2]}{[HgO]^2[H_2O][Cl_2]^2}](https://tex.z-dn.net/?f=K_%7Beq%7D%3D%5Cfrac%7B%5BHOCl%5D%5E2%5BHgO.HgCl_2%5D%7D%7B%5BHgO%5D%5E2%5BH_2O%5D%5BCl_2%5D%5E2%7D)
The concentration of solid is taken to be 0.
So, the expression for
is given as:
![K_{eq}=\frac{[HOCl]^2}{[H_2O][Cl_2]^2}](https://tex.z-dn.net/?f=K_%7Beq%7D%3D%5Cfrac%7B%5BHOCl%5D%5E2%7D%7B%5BH_2O%5D%5BCl_2%5D%5E2%7D)
Answer:
Ne, Ar, and Kr are gases at STP, unreactive, and are generally monatomic.
Explanation:
they are unreactive and monoatomic and thats why have a very low boiling point.
- From the general law of gases: PV = nRT,
where P is the pressure (atm),
V is the volume (L),
n is the number of moles,
R is the general gas constant (8.314 L.atm/mol.K),
T is the temperature in Kelvin
- at constant volume of the gas: P1T2 = P2T1
P1 = 3.20 atm, T1 = 300 K, T2 = 290 K, P2 = ??
(3.20 atm)(290 K) = P2(300 K)
P2 = (3.20 atm)(290 K)/ (300 K) = 3.093 atm
Answer: 18.0152 milliliters
Explanation:
Hi, to answer this question we have to apply the next formula:
Water volume = water mass / water density
Since 1 mol of water weights 18.0152 grams
Replacing with the values and solving:
Water volume = 18.0152 g / 1 g /ml = 18.0152 milliliters
Feel free to ask for more if needed or if you did not understand something.