Refer to the figure shown below.
g = 9.8 m/s², the acceleration due to gravity.
W = mg, the weight of the mug.
θ = 17°, the angle of the ramp.
Let μ = the coefficient of static friction.
The force acting down the ramp is
F = W sin θ = W sin(17°) = 0.2924W N
The normal reaction is
N = W cosθ = W cos(17°) = 0.9563W N
The resistive force due to friction is
R = μN = 0.9563μW N
For static equilibrium,
μN = F
0.9563μW =0.2924W
μ = 0.3058
The frictional force is F = μN = 0.2924W
The minimum value of μ required to prevent the mug from sliding satisfies
the condition
R > F
0.9563μW > 0.2924W
μ > 002924/.9563 = 0.306
Answer:
The frictional force is 0.2924mg, where m = the mass of the mug.
The minimum coefficient of static friction is 0.306
Answer:
Electromagnetic wave are waves formed as a result of the oscillatory activities involving the electric and the magnetic field.
However in an Electromagnetic wave, the electric field and magnetic field carry equal amounts of energy and the magnitude of the electric field is directly proportional to the magnitude of the magnetic field. This direct proportionality gives rise to the speed of light being the constant between the two fields.
When the electric field is doubled then an equal action is to be set for the magnetic field so it doesn’t deviate from its main functions and characteristics.
Answer:
The object accelerates downward at 4 m/s² since the tension on the rope is less than weight of the object.
Explanation:
Given;
mass of the object, m = 2 kg
weigh of the object, W = 20 N
tension on the rope, T = 12 N
The acceleration of the object is calculated by applying Newton's second law of motion as follows;
T = F + W
T = ma + W
ma = T - W
(the negative sign indicates deceleration of the object)
The object accelerates downward at 4 m/s² since the tension on the rope is less than weight of the object.
The vanishing of an ionic solid (like table salt) would be an example of acting like a solvent