Explanation:
When the wire is connected to a battery, the compass needle moves and changes its position. This happens because the needle magnetizes the copper wire, thus, creating a force.
While the current in the wire produces a magnetic field and exerts a force on the needle. The insulation on the wire becomes energized and exerts a force on the needle. Hence, the compass needle moves and changes its position.
Answer:
the normal force on the rock acts perpendicular to the bowl's surface.
Explanation:
As we know that Normal force is the reaction force of two contact surfaces which always act perpendicular to the contact surfaces
Here we know that the rock is moving inside the bowl
So Normal force on the rock must perpendicular to the surface of the bowl which always passes through the center of the bowl.
Since the rock is moving in vertical plane so it must have two acceleration
1) Tangential acceleration which will increase the magnitude of the speed along the tangential path
2) Centripetal acceleration which will change the direction of the rock
So here only correct option will be
the normal force on the rock acts perpendicular to the bowl's surface.
when an object is revolving in circular path then its velocity is always along the tangent of the circular path
so while moving in circular path if the string is break then due to law of inertia the object will always move in the direction of initial motion
As we know that as per law of inertia if an object will not change its state of motion or state of rest until some external force will act on it.
So here also the object will move along its tangential direction once the string will break
so here the correct path will be
Option B
The solution for the problem is:
Wavelength = Planck’s constant/(mass*velocity)
Planck’s constant= 6.63*10^-34 with units of J-s or kg-m^2/s^2-s
mass = 149g = 0.149 kg
velocity = 95.4.mi/1hr(1609.3m/1mi)(1hr/3600sec) = 42.65m/s
h/mv = 6.63*10^-34 kg-m^2/s^2-s/(42.65m/s*0.149kg)
wavelength = 1.04 *10^-34 m