<span>First, she should put the sample in a test tube and place it in a centrifuge. This would cause the red blood cells to move to the bottom because of their higher density. Next, she would be able to decant the plasma and analyze it separately from the red blood cells.</span>
Answer:
The coefficient of friction and acceleration are 0.37 and 2.2 m/s²
Explanation:
Suppose we find the coefficient of friction and the acceleration of the 100 kg block during the time that the 60 kg block remains in contact.
Given that,
Mass of block = 60 kg
Acceleration = 2.0 m/s²
Mass = 100 kg
Horizontal force = 340 N
Let the frictional force be f.
We need to calculate the frictional force
Using balance equation

Put the value into the formula



We need to calculate the coefficient of friction
Using formula of friction force




We need to calculate the acceleration of the 100 kg block
Using formula of newton's law




Hence, The coefficient of friction and acceleration are 0.37 and 2.2 m/s²
Answer: Photoelectric wave
Explanation: Because it represents an interaction between light and matter that describes light as an electromagnetic wave.
Answer:
Manage your weight
Have lower blood pressure
Lower your risk of falls
it reduces your risk of heart attack
Electricity/or any source that give a connection of electricity