Answer:
t = 1.75
t = 0.04
Explanation:
a)
For part 1 we want to use a kenamatic equation with constant acceleration:
X = 1/2*a*t^2
isolate time
t = sqrt(2X / a)
Plugin known variables. Acceleration is the force of gravity which is 9.8 m/s^2
t = sqrt(2*15m / 9.8m/s^2)
t = 1.75 s
b)
The speed of sound travels at a constant speed therefore we don't need acceleration and can use the equation:
v = d / t
isolate time
t = d / v
plug in known variables
t = 15m / 340m/s
t = 0.04 s
<h2>
Answer: 0.17</h2>
Explanation:
The Stefan-Boltzmann law establishes that a black body (an ideal body that absorbs or emits all the radiation that incides on it) "emits thermal radiation with a total hemispheric emissive power proportional to the fourth power of its temperature":
(1)
Where:
is the energy radiated by a blackbody radiator per second, per unit area (in Watts). Knowing 
is the Stefan-Boltzmann's constant.
is the Surface area of the body
is the effective temperature of the body (its surface absolute temperature) in Kelvin.
However, there is no ideal black body (ideal radiator) although the radiation of stars like our Sun is quite close. So, in the case of this body, we will use the Stefan-Boltzmann law for real radiator bodies:
(2)
Where
is the body's emissivity
(the value we want to find)
Isolating
from (2):
(3)
Solving:
(4)
Finally:
(5) This is the body's emissivity
I think it is but 1. Element symbol
Answer:
0.5*10uF * 16*16 =0.0128
Explanation:
I have no explanation just like my soul.
Answer:
Explanation:
spring constant k = 425 N/m
a ) At the point of equilibrium
restoring force = frictional force
= kx = 10 N
425 x = 10
x = 2.35 cm
b )
Work done by frictional force
= -10 x 2.35 x 10⁻² x 2 J ( Distance is twice of 2.35 cm )
= - 0.47 J
= Kinetic energy remaining with the cookie as it slides back through the position where the spring is unstretched .
= 425 - 0.47
= 424.53 J
=