Answer: a) 
b) 
c) 
d) 
Explanation:
General representation of an element is given as:_Z^A\textrm{X}
where,
Z represents Atomic number
A represents Mass number
X represents the symbol of an element
Mass number is defined as the sum of number of protons and neutrons that are present in an atom.
Mass number = Number of protons + Number of neutrons
In an atom, when neutrons or protons are lost or gains, it directly affects the mass number of an atom.
Atomic number is defined as the number of protons or number of electrons that are present in an atom.
It is characteristic of a particular element.
Atomic number = Number of electrons = Number of proton
a) Z 74, A 186: 
b) Z 80, A 201: 
c) Z 34, A 76: 
d) Z 94, A 239.: 
The middle nitrogen has two sigma bonds and one pi bond. You know that one p orbital is used in the double bond and two sp2 orbitals are involved in the sigma bond. This leaves one sp2 orbital for the lone pair to occupy.
1. B
The positive charge in water is provided by hydrogen, and gold provides the same charge. However, gold is not more reactive than hydrogen so it can not replace it in the compound.
2. In order to balance the equation, you must sure there are equal moles of each element on the left and right side of the equation:
2C₂H₆ + 7O₂ → 4CO₂ + ₆H₂O
3. The number of moles of sodium atoms on the left of the equation must be equal to the number of moles of sodium atoms on the right, as per the law of conservation of mass. The answer is B.
4. C.
A synthesis reaction usually results from single displacement because some element or compound is produced in its pure form
5. B.
The gas being produced is being synthesized.
I am guessing that your solutions of HCl and of NaOH have approximately the same concentrations. Then the equivalence point will occur at pH 7 near 25 mL NaOH.
The steps are already in the correct order.
1. Record the pH when you have added 0 mL of NaOH to your beaker containing 25 mL of HCl and 25 mL of deionized water.
2. Record the pH of your partially neutralized HCl solution when you have added 5.00 mL of NaOH from the buret.
3. Record the pH of your partially neutralized HCl solution when you have added 10.00 mL, 15.00 mL and 20.00 mL of NaOH.
4. Record the NaOH of your partially neutralized HCl solution when you have added 21.00 mL, 22.00 mL, 23.00 mL and 24.00 mL of NaOH.
5. Add NaOH one drop at a time until you reach a pH of 7.00, then record the volume of NaOH added from the buret ( at about 25 mL).
6. Record the pH of your basic HCl-NaOH solution when you have added 26.00 mL, 27.00 mL, 28.00 mL, 29.00 mL and 30.00 mL of NaOH.
7. Record the pH of your basic HCl-NaOH solution when you have added 35.00 mL, 40.00 mL, 45.00 mL and 50.00 mL of NaOH from your 50mL buret.