Because it has a really high melting point, i thinks its 1600 to 1725 degrees ferenheight
<span>a thermodynamic quantity representing the unavailability of a system's thermal energy for conversion into mechanical work, often interpreted as the degree of disorder or randomness in the system.</span>
Answer:
8 mol
Explanation:
Step 1: Calculate the mass of PtCl₄ in the sample
10.00 grams of a sample of hydrated PtCl₄ are heated and lose 3.00 g of water. The mass of PtCl₄ is:
mPtCl₄ = 10.00 g - 3.00 g = 7.00 g
Step 2: Calculate the moles corresponding to 7.00 g of PtCl₄ and 3.00 g of H₂O
The molar mass of PtCl₄ is 336.9 g/mol.
7.00 g × 1 mol/336.9 g = 0.0208 mol
The molar mass of H₂O is 18.02 g/mol.
3.00 g × 1 mol/18.02 g = 0.166 mol
The molar ratio of H₂O to PtCl₄ is:
0.166 mol H₂O/0.0208 mol PtCl₄ ≈ 8 mol H₂O/ 1 mol PtCl₄
Answer:
0.1313 g.
Explanation:
- It is known that at STP, 1.0 mole of ideal gas occupies 22.4 L.
- Suppose that hydrogen behaves ideally and at STP conditions.
<u><em>Using cross multiplication:</em></u>
1.0 mol of hydrogen occupies → 22.4 L.
??? mol of hydrogen occupies → 1.47 L.
∴ The no. of moles of hydrogen that occupies 1.47 L = (1.0 mol)(1.47 L)/(22.4 L) = 6.563 x 10⁻² mol.
- Now, we can get the no. of grams of hydrogen in 6.563 x 10⁻² mol:
<em>The no. of grams of hydrogen = no. of hydrogen moles x molar mass of hydrogen</em> = (6.563 x 10⁻² mol)(2.0 g/mol) = <em>0.1313 g.</em>