Answer:
I believe that would be methane! I hope this helps you!
Answer:
The heat of combustion is -25 kJ/g = -2700 kJ/mol.
Explanation:
According to the Law of conservation of energy, the sum of the heat released by the combustion reaction and the heat absorbed by the bomb calorimeter is equal to zero.
Qcomb + Qcal = 0
Qcomb = - Qcal
The heat absorbed by the calorimeter can be calculated with the following expression.
Qcal = C × ΔT
where,
C is the heat capacity of the calorimeter
ΔT is the change in temperature
Then,
Qcomb = - Qcal
Qcomb = - C × ΔT
Qcomb = - 1.56 kJ/°C × 3.2°C = -5.0 kJ
Since this is the heat released when 0.1964 g o quinone burns, the energy of combustion per gram is:

The molar mass of quinone (C₆H₄O₂) is 108 g/mol. Then, the energy of combustion per mole is:

<u>Answer:</u> The correct answer is Option B.
<u>Explanation:</u>
To calculate the final pressure of the system, we use the equation given by Gay-Lussac Law. This law states that pressure of the gas is directly proportional to the temperature of the gas at constant volume.
Mathematically,
(at constant volume)
where,
are the initial pressure and temperature of the gas.
are the final pressure and temperature of the gas.
We are given:
Conversion factor: 

Putting values in above equation, we get:

Hence, the correct answer is Option B.
First, we determine how many electrons can each subshell hold:
s can hold 2 electrons
p can hold 6 electrons
d can hold 10 electrons
f can hold 14 electrons
Second, we start distributing the 10 electrons on the orbitals of subshells based on the arrangement shown in the question :
1s will hold 2 electrons
2s will hold 2 electrons
2p will hold 6 electrons
All other orbitals will will hold zero electrons as the 10 were distributed among the first 2
Answer: 1s: 2
2s: 2
2p: 6
<span> 3s: 0
3p: 0
4s: 0
3d: 0
4p: 0
5s: 0</span>
Answer:
1.5×10⁷ Hz
Explanation:
From the question given above, the following data were obtained:
Wavelength of radio wave (λ) = 20 m
Frequency (f) =?
Frequency and wavelength of a wave are related by the following equation:
v = λf
Where:
'v' is the velocity of electromagnetic wave.
'λ' is the wavelength
'f' is the frequency.
With the above formula, we can obtain the frequency of the radio wave as illustrated below:
Wavelength of radio wave (λ) = 20 m
Velocity (v) = 3×10⁸ m/s
Frequency (f) =?
v = λf
3×10⁸ = 20 × f
Divide both side by 20
f = 3×10⁸ / 20
f = 1.5×10⁷ Hz
Thus the frequency of the radio wave is 1.5×10⁷ Hz