True. No matter can be created nor destroyed in pretty much every aspect of life, especially chemical reactions.
The answer is C) a rolling bowling ball because kinetic energy is the energy of movement and potential energy is the energies of the others, since there are not in movement. i hope this helps.
Answer:
a) V = - x ( σ / 2ε₀)
c) parallel to the flat sheet of paper
Explanation:
a) For this exercise we use the relationship between the electric field and the electric potential
V = - ∫ E . dx (1)
for which we need the electric field of the sheet of paper, for this we use Gauss's law. Let us use as a Gaussian surface a cylinder with faces parallel to the sheet
Ф = ∫ E . dA =
/ε₀
the electric field lines are perpendicular to the sheet, therefore they are parallel to the normal of the area, which reduces the scalar product to the algebraic product
E A = q_{int} /ε₀
area let's use the concept of density
σ = q_{int}/ A
q_{int} = σ A
E = σ /ε₀
as the leaf emits bonnet towards both sides, for only one side the field must be
E = σ / 2ε₀
we substitute in equation 1 and integrate
V = - σ x / 2ε₀
V = - x ( σ / 2ε₀)
if the area of the sheeta is 100 cm² = 10⁻² m²
V = - x (10⁻²/(2 8.85 10⁻¹²) = - x ( 5.6 10⁻¹⁰)
x = 1 cm V = -1 V
x = 2cm V = -2 V
This value is relative to the loaded sheet if we combine our reference system the values are inverted
V ’= V (inf) - V
x = 1 V = 5
x = 2 V = 4
x = 3 V = 3
These surfaces are perpendicular to the electric field lines, so they are parallel to the sheet.
In the attachment we can see a schematic representation of the equipotential surfaces
b) From the equation we can see that the equipotential surfaces are parallel to the sheet and equally spaced
c) parallel to the flat sheet of paper
Answer:
No. Touching a live electric current is never a good idea.
Explanation:
Answer:
P=F/A where F is the weight of the water and A is the area on which it is resting. The weight of the water is mg. The mass of the water is dv where d is the density and v is the volume. Finally, the volume of the water in a vessel is equal to the area of the base of the vessel times the height of the vessel. (v=Ah)
Plugging everything in we get:
P = dAhg/A
So
P=dhg
So we have shown that liquid pressure is directly proportional to height of liquid in a vessel.