since child is moving along with the wagon and we need to find the acceleration of child inside that wagon then in this case the system of interest must be child + wagon
System of interest will be the system that is used to find the force or acceleration using Newton's law
Here we have to assume that system on which if we will calculate the forces then the net value of force on that system will help to calculate the unknown quantities
So here our system will be boy + wagon
Mass is indirectly proportional to acceleration, so, lighter the object greater would be it's acceleration...
A) 0.10 kg is lightest among them, so it's your answer
Answer:
mass
Explanation:
This energy of motion is what we call kinetic energy. ... In fact, kinetic energy is directly proportional to mass: if you double the mass, then you double the kinetic energy. Second, the faster something is moving, the greater the force it is capable of exerting and the greater energy it possesses.
pls make as brainlieast
1) The total mechanical energy of the rock is:

where U is the gravitational potential energy and K the kinetic energy.
Initially, the kinetic energy is zero (because the rock starts from rest, so its speed is zero), and the total mechanical energy of the rock is just gravitational potential energy. This is equal to

where

is the mass,

is the gravitational acceleration and

is the height.
Putting the numbers in, we find the potential energy

2) Just before hitting the ground, the potential energy U is zero (because now h=0), and all the potential energy of the rock converted into kinetic energy, which is equal to:

where v is the speed of the rock just before hitting the ground. Since the mechanical energy of the rock must be conserved, then the kinetic energy K before hitting the ground must be equal to the initial potential energy U of the rock:

3) For the work-energy theorem, the work W done by the gravitational force on the rock is equal to the variation of kinetic energy of the rock, which is:
Answer:
A
Explanation:
its oxygen I hope i am correct have a great day.