1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lana66690 [7]
3 years ago
14

A +5.00 pC charge is located on a sheet of paper.

Physics
1 answer:
emmainna [20.7K]3 years ago
8 0

Answer:

a)    V = - x ( σ / 2ε₀)

c)  parallel to the flat sheet of paper

Explanation:

a) For this exercise we use the relationship between the electric field and the electric potential

          V = - ∫ E . dx        (1)

for which we need the electric field of the sheet of paper, for this we use Gauss's law. Let us use as a Gaussian surface a cylinder with faces parallel to the sheet

       Ф = ∫ E . dA = q_{int} /ε₀

the electric field lines are perpendicular to the sheet, therefore they are parallel to the normal of the area, which reduces the scalar product to the algebraic product

          E A = q_{int} /ε₀

area let's use the concept of density

        σ = q_{int}/ A

       q_{int} = σ A

          E = σ /ε₀

as the leaf emits bonnet towards both sides, for only one side the field must be

          E = σ / 2ε₀

         we substitute in equation 1 and integrate

      V = - σ x / 2ε₀  

       V = - x ( σ / 2ε₀)

if the area of ​​the sheeta is 100 cm² = 10⁻² m²

      V = - x  (10⁻²/(2 8.85 10⁻¹²) = - x  ( 5.6 10⁻¹⁰)

       

      x = 1 cm     V = -1   V

      x = 2cm     V = -2   V

This value is relative to the loaded sheet if we combine our reference system the values ​​are inverted

       V ’= V (inf) - V

       x = 1 V = 5

       x = 2 V = 4

       x = 3 V = 3

   

These surfaces are perpendicular to the electric field lines, so they are parallel to the sheet.

 

In the attachment we can see a schematic representation of the equipotential surfaces

b) From the equation we can see that the equipotential surfaces are parallel to the sheet and equally spaced

c) parallel to the flat sheet of paper

You might be interested in
A table exerts a 4.0 Newton force on a book which lies at rest on its top. The force exerted by the book on the table is
SOVA2 [1]
I believe the correct answer from the choices listed above is the third option. <span>The force exerted by the book on the table is equal to the force exerted by the table which is 4.0 N. The book does not move so it must be that the forces are balanced. Hope this answers the question.</span>
4 0
3 years ago
Read 2 more answers
During the compression stroke of an internal combustion engine, _____
Leona [35]

easy, The fuel is ignited

6 0
3 years ago
The seafloor spreading process at ridges produces what kind of faults?
irga5000 [103]
Active transform faults are between two tectonic<span> structures or faults.</span>
4 0
3 years ago
Que cuerpos celestes observó laika durante su viaje
sergejj [24]
Do you want me to translate it?
4 0
3 years ago
A rigid, nonconducting tank with a volume of 4 m3 is divided into two unequal parts by a thin membrane. One side of the membrane
kondor19780726 [428]

The final temperature of the system will be equal to the initial temperature, and which is 373K. The work done by the system is 409.8R Joules.

To find the answer, we need to know about the thermodynamic processes.

<h3>How to find the final temperature of the gas?</h3>
  • Any processes which produce change in the thermodynamic coordinates of a system is called thermodynamic processes.
  • In the question, it is given that, the tank is rigid and non-conducting, thus, dQ=0.
  • The membrane is raptured without applying any external force, thus, dW=0.
  • We have the first law of thermodynamic expression as,

                                dU=dQ-dW

  • Here it is zero.

                                  dU=0,

  • As we know that,

                             dU=C_pdT=0\\\\thus,  dT=0\\\\or , T=constant\\\\i.e, T_1=T_2

  • Thus, the final temperature of the system will be equal to the initial temperature,

                          T_1=T_2=100^0C=373K

<h3>How much work is done?</h3>
  • We found that the process is isothermal,
  • Thus, the work done will be,

                               W=RT*ln(\frac{V_2}{V_1} )=373R*ln(\frac{4}{\frac{4}{3} })\\ \\W=409.8R J

Where, R is the universal gas constant.

<h3>What is a reversible process?</h3>
  • Any process which can be made to proceed in the reverse direction is called reversible process.
  • During which, the system passes through exactly the same states as in the direct process.

Thus, we can conclude that, the final temperature of the system will be equal to the initial temperature, and which is 373K. The work done by the system is 409.8R Joules.

Learn more about thermodynamic processes here:

brainly.com/question/28067625

#SPJ1

7 0
2 years ago
Read 2 more answers
Other questions:
  • An astronaunt in a space capsule orbiting the earth experience weightlessness. why?
    5·1 answer
  • A solid, cylindrical wire conductor has radius R = 30 cm. The wire carries a current of 2.0 A which is uniformly distributed ove
    11·1 answer
  • The path of a meteor passing Earth is affected by its gravitational force and falls to Earth's surface. Another meteor of the sa
    8·2 answers
  • Identify the normal force on the shopping cart after 75 newtons of groceries are added to the cart
    5·2 answers
  • Trees are planned in roads to reduce noise. Justify the statement ​
    11·1 answer
  • What is the variable that is manipulated by the experimenter during an experiment called
    14·1 answer
  • Topic: Chapter 19: Some wiggle room
    8·1 answer
  • Explain centripetal force, is it a force? When does it occur, give a cartoon example or a movie example.
    6·1 answer
  • When a player recieves a penalty, they sit in the penalty box for __ min(s).
    14·2 answers
  • A bullet of mass M1 is fired towards a block of mass m2 initially at rest at the edge of a frictionless table of height h as in
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!