Answer:
a) Unsaturated
b) Supersaturated
c) Unsaturated
Explanation:
A saturated solution contains the <u>maximum amount of a solute that will dissolve in a given solvent at a specific temperature</u>.
An unsaturated solution contains <u>less solute than it has the capacity to dissolve. </u>
A supersaturated solution, <u>contains more solute than is present in a saturated solution</u>. Supersaturated solutions are not very stable. In time, some of the solute will come out of a supersaturated solution as crystals.
According to these definitions and considering that the solubility of KCl in 100 mL of H₂O at <u>20 °C is 34 g</u>, and at <u>50 °C is 43 g</u> we can label the solutions:
a) 30 g in 100 mL of H₂O at 20 °C ⇒ unsaturated
b) 65 g in 100 mL of H₂O at 50 °C ⇒ supersaturated
c) 42 g in 100 mL of H₂O at 50 °C and slowly cooling to 20 °C to give a clear solution <u>with no precipitate</u> ⇒ unsaturated (if it were saturated it would have had precipitate)
Answer: Acceleration and velocity
Explanation:
Newton's second law says that when a constant force acts on a massive body, it causes it to accelerate, i.e., to change its velocity, at a constant rate. In the simplest case, a force applied to an object at rest causes it to accelerate in the direction of the force.
453 divided by 224
density is roughly 2.02 g per ml
as a ml is 1 cm3 density is 2.02 grams per centimeter cubed
Answer:
C₆H₆
Explanation:
Each border of the figure represents 1 atom of carbon. We have 6 borders = 6 atoms of carbon.
Each atom of carbon form 4 bonds. All the carbons are doing a double bond and a single bond with other carbons. That means are bonded 3 times. The other bond (That is not represented in the figure. See the image) comes from hydrogens. As we have 6 carbons that are bonded each 1 with one hydrogen. There are six hydrogens and the molecular formula is:
<h3>C₆H₆</h3>
This structure is: Benzene
Answer:
V = 12.5 L
Explanation:
Given data:
Volume of NO = 15.0 L
Temperature and pressure = standard
Volume of nitrogen gas produced = ?
Solution:
Chemical equation:
6NO + 4NH₃ → 5N₂ + 6 H₂O
Number of moles of NO:
PV = nRT
n = PV/RT
n = 1 atm × 15.0 L / 0.0821 atm.L /mol.K × 273.15 K
n = 15.0 atm.L / 22.43 atm.L /mol
n = 0.67 mol
now we will compare the moles of No and nitrogen gas.
NO : N₂
6 : 5
0.67 : 5/6×0.67 = 0.56
Volume of nitrogen gas:
PV = nRT
1 atm × V = 0.56 mol × 0.0821 atm.L /mol.K × 273.15 K
V = 12.5 atm.L / 1 atm
V = 12.5 L