To take the percent by mass of this element, we use the
formula:
% mass = (mass of element / mass of ore) * 100%
% mass = (47.5 g / (660 kg * 1000 g / kg)) * 100*
<span>% mass = 7.20 x 10^-3 %</span>
Answer:
I think im good at it i have an A in the class
Explanation:
lol
Answer:
.0556 L
Explanation:
First, convert the 1.35 M to 1.35 mol/L in order for the units to correctly cancel out.
Then, multiply (0.0725 moles Na2CO3/1) times (L/ 1.35 mol).
Finally, the answer will be .0556 L.
<h3 />
Döbereiner grouped the known elements into <em>triads</em> (sets of three) so that
• The <em>atomic mass of the middle element</em> was approximately the average of the other two
• The <em>chemical properties of the middle element</em> were between those of the other two
• The <em>physical properties of the middle element</em> were between those of the other two
One example of a triad is Li – Na – K.
(a) Atomic mass of Na = 23.0 u
Average atomic mass of Li and K = (6.9 u + 39.1 u)/2 = 46.0 u/2 = 23.0 u
(b) Li reacts slowly with water. Na reacts rapidly. Potassium reacts violently.
(c) Melting point of Na = 371 °C.
Average melting point of Li and K = (454 °C + 330 °C)/2 = 784 °C/2
= 392 °C
C.) Newton. & it's S.I. Unit of Force.
Hope this helps!