Answer:
[NH₃] → 3.24 M
Explanation:
Our solute: Ammonia
Our solvent: Water
Solution's mass = Mass of solute + Mass of solvent
Solution's mass = 15 g + 250 g = 265g
We use density to determine, the volume.
D = mass /volume → Volume = m / D → 265 g /0.974 g/mL = 272.07 mL.
We convert the mL to L → 272.07 mL . 1L /1000mL = 0.27207 L
To determine molarity we need the moles of solute in 1 L of solution.
Moles of solute are: 15g / 17g/mol = 0.882 moles
[NH₃] = 0.882mol /0.27207 L → 3.24 M
Complete ionic:
Cu(aq) + 2Cl(aq) + 8O(aq) + 2Na(aq) + C(aq) + 3O(aq) = CaCO3(s) + 2Na(aq) + Cl(aq) + 4O(aq)
Net ionic:
Cu(aq) + Cl(aq) + 4O(aq) + 2Na(aq) + C(aq) + 3O(aq) = CaCO3(s)
So write everything out as IF it will dissociate in water. So everything that is aq splits but solid just floats to the bottom of the mixture. Cancel what you can (in this case the two from the ClO4 on the left of the equation cancels with the ClO4 from the right) and the 2Na cancels. Then, write out the whole solution and you are done!
First we need to know that the boiling point of water in C is 100 and we just need to solve for x in the equation:
-33.75-(-77.75) / 100 = 100-(-77.75) / x
44.4/100 = 177.75 / x
x = 177.75*100/44.4 = 400.33
The boiling point of water in ∘a would be 400.33∘a.
To the right
Because there is an unbalanced force in that direction
:)
Answer:
iodous acid
Explanation:
iodous acid would also be known as HIO2