(343.98)x400,000/(413.4)
137,592,000/413.4
332,830.188679
Answer:
850
Step-by-step explanation:
Answer:
1. 40%
2. The theoretical probability is 3% greater than the experimental probability.
Step-by-step explanation:
We are informed that a number cube is rolled 20 times and the number 4 is rolled 8 times. The experimental probability of rolling a 4 is;
(the number of times a 4 was rolled)/(total number of rolls)
8/20 = 0.4
0.4*100 = 40%
The experimental probability of obtaining at least one tails, one or more tails, is represented in mathematical notation as;
P(HT or TH or TT)
The above events are mutually exclusive, thus;
P(HT or TH or TT) = P(HT) + P(TH) + P( TT)
= (22+34+16)/(28+22+34+16)
= 0.72 = 72%
On the other hand, the theoretical probability of obtaining at least one tails,
P(HT or TH or TT) = 3/4
= 75%
This is because there is at least one tail in 3 out of 4 possible outcomes.
Therefore, it is true to say that the theoretical probability is 3% greater than the experimental probability.
Answer:
-6re−r [sin(6θ) - cos(6θ)]
Step-by-step explanation:
the Jacobian is ∂(x, y) /∂(r, θ) = δx/δθ × δy/δr - δx/δr × δy/δθ
x = e−r sin(6θ), y = er cos(6θ)
δx/δθ = -6rcos(6θ)e−r sin(6θ), δx/δr = -sin(6θ)e−r sin(6θ)
δy/δθ = -6rsin(6θ)er cos(6θ), δy/δr = cos(6θ)er cos(6θ)
∂(x, y) /∂(r, θ) = δx/δθ × δy/δr - δx/δr × δy/δθ
= -6rcos(6θ)e−r sin(6θ) × cos(6θ)er cos(6θ) - [-sin(6θ)e−r sin(6θ) × -6rsin(6θ)er cos(6θ)]
= -6rcos²(6θ)e−r (sin(6θ) - cos(6θ)) - 6rsin²(6θ)e−r (sin(6θ) - cos(6θ))
= -6re−r (sin(6θ) - cos(6θ)) [cos²(6θ) + sin²(6θ)]
= -6re−r [sin(6θ) - cos(6θ)] since [cos²(6θ) + sin²(6θ)] = 1
<span>B. f(x) = x^2 + 6x - 7
All you have to do is foil
</span>