7/8 and 9/16
7*2/8*2 = 14/16
14/16 and 9/16
Now since we have a common denominator, we can compare the numerators.
14/16 is greater, so 7/8 is greater than 9/16
Answer: 7/8 is bigger
An unknown variable ..............
Step-by-step explanation:
Using the properties of logarithms, the left side of the equation becomes
![\log{3x^3} - \log{x^2} = \log{3x}](https://tex.z-dn.net/?f=%5Clog%7B3x%5E3%7D%20-%20%5Clog%7Bx%5E2%7D%20%3D%20%5Clog%7B3x%7D)
while the right hand side becomes
![\log{27} - \log{x} = \log{\frac{27}{x}}](https://tex.z-dn.net/?f=%5Clog%7B27%7D%20-%20%5Clog%7Bx%7D%20%3D%20%5Clog%7B%5Cfrac%7B27%7D%7Bx%7D%7D)
so we end up with
![3x^2 =27 \Rightarrow x = 3](https://tex.z-dn.net/?f=3x%5E2%20%3D27%20%5CRightarrow%20%20x%20%3D%203)