Answer:
The best answer to the question: What is the most likely explanation for this observation, would be, B: RNA processing removes the different segments from the mRNA molecules of each person prior to translation.
Explanation:
In order for cells to work, they depend on one of the four major macromolecules; proteins. These proteins are the messengers that carry out genetic commands from the DNA and they will ensure that all processes, including transcription and translation of new proteins, are carried out correctly. In order to produce proteins, the first step is for the DNA to be transcribed into mRNA, a nucleic acid that carries out the information on the DNA for protein generation. Once transcription stops, mRNA undergoes a series of clipping and reorganizing steps that will ensure that when it is decoded for protein formation, the process will be successful. These control steps are all part of the RNA processing mechanism that enures mRNA will successfully be translated into working proteins.
The reason why from genes of different people, a very similiar protein chain may result, is also explained from the fact that codons (a grouping of three nucleotides present in mRNA), when read by ribosomes, and coupled by tRNA, can pair these codons with similar amino acids. Thus, one codon, or similar codons, may code for a singular amino acid. However, mechanisms in the cells prevent these kinds of anomalies, by repairing the mRNA sequence before it is translated into protein.
Answer: the study of living organisms, divided into many specialized fields that cover their morphology, physiology, anatomy, behavior, origin, and distribution.
or
the physiology, behavior, and other qualities of a particular organism or class of organisms.
and
the plants and animals of a particular area
Answer: Options A, B, C and D are correct.
Explanation: They can trigger the activity of histone acetyltransferases.
These RNAs functions by binding to histone-modifying complexes, to DNA binding proteins (including transcription factors), and even to RNA polymerase II.
They can silence genes by promoting the formation of euchromatin by arranging hetero- or euchromatic regions into close proximity may stabilize these domains or it may control the spreading of post-translational modifications (PTMs) to nearest chromatin.
They are actively involved in X chromosome inactivation.
They can regulate the translation and stability of mRNAs.
In Eukaryotic cells RNA transcription is a closely regulated process. Transcription of a lncRNA may regulate the transcription of nearby mRNA genes, either positively (maintaining active chromatin structure) or negatively (for example, colliding polymerases). In these cases, the RNA product may have no importance at all, or it could have an additional function.
Answer: Substrates im pretty sure
Explanation: mark brainliest pls