Answer:
Formation. Our solar system formed about 4.5 billion years ago from a dense cloud of interstellar gas and dust. ... When this dust cloud collapsed, it formed a solar nebula—a spinning, swirling disk of material. At the center, gravity pulled more and more material in.
Explanation:
First the amount of work done in lifting up the snow ball to a height of 1.2m is equal to the potential energy of the ball after the lift.
Therefore mass× gravitational pull×height will give us the work done
=3.2kg ×9.8N/kg×1.2m
=37.632J
then, the work done over the 25m distance if found by the following formula: work done=force×distance
=1.0N×25m
=25J
On reaching the headless snowman you have to lift the ball a further 1.1m to place it as the head 2.3m high.
therefore this will be a change in potential energy which is equal to work done in lifting the ball the additional 1.1m
=m×g×h
=3.2kg×9.8N/kg×1.1m
=34.496J
To get the total we add the amount of work done in the various instances.
Answer: Option (C) is the correct answer.
Explanation:
Minerals are inorganic substances which have certain characteristic shape or structure along with homogeneous chemical composition.
It is not necessary that a mineral should be formed under the ground.
Substances which have carbon atoms in their structure are called organic compounds. The structure of wood has carbon atoms attached thus, wood is an organic compound.
Therefore, we can conclude that common salt is a mineral because it has a definite crystal structure but wood is not a mineral because it is organic.
The body releases endorphins
The Energy flux from Star B is 16 times of the energy flux from Star A.
We have Two stars - A and B with 4900 k and 9900 k surface temperatures.
We have to determine how many times larger is the energy flux from Star B compared to the energy flux from Star A.
<h3>State Stephen's Law?</h3>
Stephens law states that if E is the energy radiated away from the star in the form of electromagnetic radiation, T is the surface temperature of the star, and σ is a constant known as the Stephan-Boltzmann constant then-

Now -
Energy emitted per unit surface area of Star is called Energy flux. Let us denote it by E. Then -

Now -
For Star A →
= 4900 K
For Star B →
= 9900 K
Therefore -

2.02 = 2 (Approx.)
Now -
Assume that the energy flux of Star A is E(A) and that of Star B is E(B). Then -

E(B) = E(A) x 
E(B) = E(A) x 
E(B) = 16 E(A)
Hence, the Energy flux from Star B is 16 times of the energy flux from Star A.
To learn more about Stars, visit the link below-
brainly.com/question/13451162
#SPJ4