Answer:
The answer is c
Thermal energy moves within the air from the flames to the marshmallow.
Explanation:
Hope it helps
The time taken for the light to travel from the camera to someone standing 7 m away is 2.33×10¯⁸ s
Speed is simply defined as the distance travelled per unit time. Mathematically, it is expressed as:
<h3>Speed = distance / time </h3>
With the above formula, we can obtain the time taken for the light to travel from the camera to someone standing 7 m away. This can be obtained as follow:
Distance = 7 m
Speed of light = 3×10⁸ m/s
<h3>Time =?</h3>
Time = Distance / speed
Time = 7 / 3×10⁸
<h3>Time = 2.33×10¯⁸ s</h3>
Therefore, the time taken for the light to travel from the camera to someone standing 7 m away is 2.33×10¯⁸ s
Learn more: brainly.com/question/14988345
Accelleration(a) is changing of velocity in second.
free fall a = g
speed increase = a = g = 20 (m/s) / s
The question is incomplete. The complete question is :
If the entire population of Earth were transferred to the Moon, how far would the center of mass of the Earth-Moon population system move? Assume the population is 7 billion, the average human has a mass of 65 kg, and that the population is evenly distributed over both the Earth and the Moon. The mass of the Earth is 5.97×1024 kg and that of the Moon is 7.34×1022 kg. The radius of the Moon’s orbit is about 3.84×105 m.
Solution :
Given :
Mass of earth, 
Mass of moon, 
Mass of each human, 
Therefore mass of total population, 

Let the earth is at the origin of the coordinate system. Then,
Since 

Hence if we shift all the population on the moon there will be negligible change in the mass of the moon and earth. Hence there will not be any significant shift on the centre of mass. i.e.


from the earth.