Answer:
The angle of incidence is greater than the angle of refraction
Explanation:
Refraction occurs when a light wave passes through the boundary between two mediums.
When a ray of light is refracted, it changes speed and direction, according to Snell's Law:
where
:
is the index of refraction of the 1st medium
is the index of refraction of the 2nd medium
is the angle of incidence (the angle between the incident ray and the normal to the boundary)
is the angle of refraction (the angle between the refracted ray and the normal to the boundary)
In this problem, we have a ray of light passing from air into clear plastic. We have:
(index of refraction of air)
approx. (index of refraction in clear plastic)
Snell's Law can be rewritten as

And since
, we have

And so

Which means that
The angle of incidence is greater than the angle of refraction
The position at time t is
x(t) = 0.5t³ - 3t² + 3t + 2
When the velocity is zero, the derivative of x with respect to t is zero. That is,
x' = 1.5t² - 6t + 3 = 0
or
t² - 4t + 2 = 0
Solve with the quadratic formula.
t = (1/2) [ 4 +/- √(16 - 8)] = 3.4142 or 0.5858 s
When t =0.5858 s, the position is
x = 0.5(0.5858³) - 3(0.5858²) + 3(0.5858) + 2 = 2.828 m
When t=3.4142 s, the position is
x = 0.5(3.4142³) - 3(3.4142²) + 3(3.4142) + 2 = -2.828 m
Reject the negative answer.
Answer:
The velocity is zero when t = 0.586 s, and the distance is 2.83 m
When the acceleration is zero, the second derivative of x with respect to t is zero. That is,
3t - 6 = 0
t = 2
The distance traveled is
x = 0.5(2³) - 3(2²) + 3(2) + 2 = 0
Answer:
When the acceleration is zero, t = 2 s, and the distance traveled is zero.
Answer:

Explanation:
k = Coulomb constant = 
r = Distance between charges = 2 cm
The electric force is given by

Also

The sum of the force is given by

Thus
.
The negative sign is because the force points downward which is taken as negative
Answer:
wavelength = 0.8989 m
Explanation:
Given data:
weight of wire is 8.25 g
length of wire is 65 cm
speed of sound in room is 344 m/s
time of returning of pulse is 7.84 ms
There are three time period
Time period 


velocity = wavelength × frequency
wavelength 

wavelength = 0.8989 m