Answer:
4
Step-by-step explanation:
set

constrain:

Partial derivatives:

Lagrange multiplier:

![\left[\begin{array}{ccc}1\\1\end{array}\right]=a\left[\begin{array}{ccc}2x\\2y\end{array}\right]+b\left[\begin{array}{ccc}3x^2\\3y^2\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%5C%5C1%5Cend%7Barray%7D%5Cright%5D%3Da%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2x%5C%5C2y%5Cend%7Barray%7D%5Cright%5D%2Bb%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D3x%5E2%5C%5C3y%5E2%5Cend%7Barray%7D%5Cright%5D)
4 equations:

By solving:

Second mathod:
Solve for x^2+y^2 = 7, x^3+y^3=10 first:

The maximum is 4
Answer:
Option C) 0.57
Step-by-step explanation:
We are given the following in the question:
Average,
= 260 calories
Standard deviation,
= 35 calories
= 240 calories.
We have to find the Cohen's d effective size.
Formula:

Thus, the Cohen's d effective size is 0.57
Thus, the answer is
Option C) 0.57
Answer:
6,452,566
Step-by-step explanation: