1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Svet_ta [14]
3 years ago
9

5.4 is an integer. True OR False

Mathematics
2 answers:
Svetach [21]3 years ago
7 0

Answer:

False

Step-by-step explanation:

As integer is a whole number that is not a fractional number that can be positive, negative, or zero.

Veseljchak [2.6K]3 years ago
7 0

Answer:

false

Step-by-step explanation:

An integer is a whole number. integers can't have a decimal places.

You might be interested in
Write the equation for a line that passes through the points (5,5) and (7,-5)
julia-pushkina [17]
This equation would be equal to y = -5x + 30
3 0
2 years ago
Read 2 more answers
Name the polynomial -2x^4-x^3*8x^2-12 by degree
Murrr4er [49]

Answer:

see below

Step-by-step explanation:

-2x^4-x^3+8x^2-12

First list by highest power to lowest power

The highest power is x^4 so this is a 4th degree polynomial or a quartic polynomial

If you really mean the multiply sign

-2x^4-x^3*8x^2-12

-2x^4 - 8x^5 -12

-8x^5 -2x^4 -12

This would be a 5th degree or quintic

8 0
3 years ago
The table top is shaped like a trapezoid. The dimensions of the face are shown in the diagram. Which equation can be used to fin
AveGali [126]

Answer:

You have no diagram shown

7 0
3 years ago
What is the derivative of 1/square root 4x.
Bumek [7]

Answer:

\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{-1}{4x^\bigg{\frac{3}{2}}}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right

<u>Algebra I</u>

Exponential Properties

  • Exponential Property [Rewrite]:                                                                   \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Property [Root Rewrite]:                                                           \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}

<u>Calculus</u>

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:                                                           \displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)  

Derivative Rule [Basic Power Rule]:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify.</em>

\displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg]

<u>Step 2: Differentiate</u>

  1. Simplify:                                                                                                         \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \bigg( \frac{1}{2\sqrt{x}} \bigg)'
  2. Rewrite [Derivative Property - Multiplied Constant]:                                   \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{1}{2} \bigg( \frac{1}{\sqrt{x}} \bigg)'
  3. Rewrite [Exponential Rule - Root Rewrite]:                                                 \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{1}{2} \bigg( \frac{1}{x^\Big{\frac{1}{2}}} \bigg)'
  4. Rewrite [Exponential Rule - Rewrite]:                                                           \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{1}{2} \bigg( x^\bigg{\frac{-1}{2}} \bigg)'
  5. Derivative Rule [Basic Power Rule]:                                                             \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{1}{2} \bigg( \frac{-1}{2} x^\bigg{\frac{-3}{2}} \bigg)
  6. Simplify:                                                                                                         \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{-1}{4} x^\bigg{\frac{-3}{2}}
  7. Rewrite [Exponential Rule - Rewrite]:                                                           \displaystyle \frac{d}{dx} \bigg[ \frac{1}{\sqrt{4x}} \bigg] = \frac{-1}{4x^\bigg{\frac{3}{2}}}

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

5 0
2 years ago
Write an equation in point-slope form of the line that passes through the point (4, 4) with slope 3.
lianna [129]

Answer:

(y-4) = 3(x-4)

Step-by-step explanation:

(y-4) = 3(x-4)

y-4= 3x-12

Y= 3x- 8

3 0
2 years ago
Other questions:
  • Which of the following equations could you use to find the nth
    9·1 answer
  • cindy is making punch for the beta club ceremony she needs to double her recipe. The recipe calls for 1/4 gallon of ginger ale a
    12·1 answer
  • Can you help me with this word problem?​
    10·1 answer
  • What is the solution to this inequality?<br> x-6&lt;-4
    11·1 answer
  • What is the degree of the polynomial 5a^6bc^2+8d^5+7e^6f^2−10g^4h^7 ?
    9·1 answer
  • Solve the triangle given two angles and one side.
    5·1 answer
  • Multiply (m-6)=3m + 14
    7·2 answers
  • Líst the key features of the quadratic function graphed.
    12·1 answer
  • 3) When mixing a paint color, you need to use 2 gallons of white and 3 gallons of blue. How many gallons of
    10·1 answer
  • Find the equation of the line whose slope is 3 and y-intercept is -5?​
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!