1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lilavasa [31]
3 years ago
10

Find the mass and center of mass of the lamina that occupies the region D and has the given density function rho. D is the trian

gular region with vertices (0, 0), (2, 1), (0, 3); rho(x, y) = 2(x + y)

Mathematics
1 answer:
Alla [95]3 years ago
3 0

Answer: mass (m) = 4 kg

              center of mass coordinate: (15.75,4.5)

Step-by-step explanation: As a surface, a lamina has 2 dimensions (x,y) and a density function.

The region D is shown in the attachment.

From the image of the triangle, lamina is limited at x-axis: 0≤x≤2

At y-axis, it is limited by the lines formed between (0,0) and (2,1) and (2,1) and (0.3):

<u>Points (0,0) and (2,1):</u>

y = \frac{1-0}{2-0}(x-0)

y = \frac{x}{2}

<u>Points (2,1) and (0,3):</u>

y = \frac{3-1}{0-2}(x-0) + 3

y = -x + 3

Now, find total mass, which is given by the formula:

m = \int\limits^a_b {\int\limits^a_b {\rho(x,y)} \, dA }

Calculating for the limits above:

m = \int\limits^2_0 {\int\limits^a_\frac{x}{2}  {2(x+y)} \, dy \, dx  }

where a = -x+3

m = 2.\int\limits^2_0 {\int\limits^a_\frac{x}{2}  {(xy+\frac{y^{2}}{2} )} \, dx  }

m = 2.\int\limits^2_0 {(-x^{2}-\frac{x^{2}}{2}+3x )} \, dx  }

m = 2.\int\limits^2_0 {(\frac{-3x^{2}}{2}+3x)} \, dx  }

m = 2.(\frac{-3.2^{2}}{2}+3.2-0)

m = 2(-4+6)

m = 4

<u>Mass of the lamina that occupies region D is 4.</u>

<u />

Center of mass is the point of gravity of an object if it is in an uniform gravitational field. For the lamina, or any other 2 dimensional object, center of mass is calculated by:

M_{x} = \int\limits^a_b {\int\limits^a_b {y.\rho(x,y)} \, dA }

M_{y} = \int\limits^a_b {\int\limits^a_b {x.\rho(x,y)} \, dA }

M_{x} and M_{y} are moments of the lamina about x-axis and y-axis, respectively.

Calculating moments:

For moment about x-axis:

M_{x} = \int\limits^a_b {\int\limits^a_b {y.\rho(x,y)} \, dA }

M_{x} = \int\limits^2_0 {\int\limits^a_\frac{x}{2}  {2.y.(x+y)} \, dy\, dx }

M_{x} = 2\int\limits^2_0 {\int\limits^a_\frac{x}{2}  {y.x+y^{2}} \, dy\, dx }

M_{x} = 2\int\limits^2_0 { ({\frac{y^{2}x}{2}+\frac{y^{3}}{3})}\, dx }

M_{x} = 2\int\limits^2_0 { ({\frac{x(-x+3)^{2}}{2}+\frac{(-x+3)^{3}}{3} -\frac{x^{3}}{8}-\frac{x^{3}}{24}  )}\, dx }

M_{x} = 2.(\frac{-9.x^{2}}{4}+9x)

M_{x} = 2.(\frac{-9.2^{2}}{4}+9.2)

M_{x} = 18

Now to find the x-coordinate:

x = \frac{M_{y}}{m}

x = \frac{63}{4}

x = 15.75

For moment about the y-axis:

M_{y} = \int\limits^2_0 {\int\limits^a_\frac{x}{2}  {2x.(x+y))} \, dy\,dx }

M_{y} = 2.\int\limits^2_0 {\int\limits^a_\frac{x}{2}  {x^{2}+yx} \, dy\,dx }

M_{y} = 2.\int\limits^2_0 {y.x^{2}+x.{\frac{y^{2}}{2} } } \,dx }

M_{y} = 2.\int\limits^2_0 {x^{2}.(-x+3)+\frac{x.(-x+3)^{2}}{2} - {\frac{x^{3}}{2}-\frac{x^{3}}{8}  } } \,dx }

M_{y} = 2.\int\limits^2_0 {\frac{-9x^3}{8}+\frac{9x}{2}   } \,dx }

M_{y} = 2.({\frac{-9x^4}{32}+9x^{2})

M_{y} = 2.({\frac{-9.2^4}{32}+9.2^{2}-0)

M{y} = 63

To find y-coordinate:

y = \frac{M_{x}}{m}

y = \frac{18}{4}

y = 4.5

<u>Center mass coordinates for the lamina are (15.75,4.5)</u>

You might be interested in
What is the solution to the system shown?
Mice21 [21]

Answer:d

Step-by-step explanation:

16-4=12 and 16+4=20

5 0
3 years ago
I need G PLZZZZZZZZZZZZZZZ
klasskru [66]
I can’t even read it
3 0
3 years ago
Determine the intercepts of the line
PolarNik [594]

Answer:

y-intercept : -7

x-intercept : 7/5

Step-by-step explanation:

<em>FOR</em><em> </em><em>Y</em><em> </em><em>intercept</em><em> </em><em>put</em><em> </em><em>x</em><em> </em><em>=</em><em>0</em><em> </em><em>in</em><em> </em><em>the</em><em> </em><em>equation</em>

<em>FOR</em><em> </em><em>x</em><em> </em><em>intercept</em><em> </em><em>put</em><em> </em><em>y</em><em>=</em><em>0</em><em> </em><em>in</em><em> </em><em>the</em><em> </em><em>equa</em><em>tion</em><em>!</em>

<em> </em><em>✌️</em><em>;</em><em>)</em>

3 0
3 years ago
Read 2 more answers
Answer all questions: 1) The electric field of an electromagnetic wave propagating in air is given by E(z,t) = 4cos(6 x 10^8 t -
Andre45 [30]

Answer:

8

Step-by-step explanation:

4 0
3 years ago
Between what two integers does the number square root of 29 lie?
lutik1710 [3]

Your Answer Will Be Between 5 and 6 Because The Square Root Of 29 Is 5.3851 ect

4 0
3 years ago
Other questions:
  • Simplify. (3x5+3x2−4x3+x−6)−(x3+4x4+2x2−10x) Enter your answer, in standard form, in the box.
    14·2 answers
  • In circle C, what is the value of X?
    5·2 answers
  • What is the elapse time for start time. 3:48 pm to end time : 8:11 pm?
    7·1 answer
  • 3 gallons of batter are poured equally into 4 bowls. How many gallons of batter are in each bowl?
    9·1 answer
  • Wo runners are saving money to attend a marathon. The first runner has $112 in savings, received a $45 gift from a friend, and w
    9·1 answer
  • Please helppp ppppñpñp
    12·1 answer
  • How do I type a number 5 exponent and a fraction?
    9·1 answer
  • A cell phone provider will allow you to buy a phone over time. They require a $50 initial payment and then charge $25 per month.
    15·1 answer
  • Could i have some super super quick help? :(( (part iv is not necessary)
    9·2 answers
  • I Need Some Help I Was Wandering If I’m Right?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!