Yo sup??
the correct answer is option C ie
a material that has a low resistance and allows charges to move freely
this is a basic property shown by conductors
Hope this helps
Answer:
time is 0.42 sec
Explanation:
Given data
radius = 23 m
angular acceleration = 5.7 rad/s²
to find out
time
solution
we know that radius is constant so that
tangential acceleration At = angular acceleration × radius ............. 1
tangential acceleration = 5.7 × 23 = 131.1 m/s²
and
radial acceleration Ar = (angular velocity)² × radius ........................2
we consider angular velocity = ω
this is acting toward center
so
compare 1 and 2
At = Ar
5.7 r =ω³ r
ω = √5.7 = 2.38746 rad/s
so
ω = 5.7 t
2.387 = 5.7 t
t = 2.387 / 5.7
t = 0.4187
time is 0.42 sec
The Euglena is unique in that it is both heterotrophic (must consume food) and autotrophic (can make its own food).
Answer:
V₁ = 5.6 m/s
V₂ = 7.2 m/s
V₃ = 8.8 m/s
Explanation:
Average velocity: Average velocity can be defined as the ratio of the total displacement to the total time taken. The S.I unit of Average velocity is m/s.
For the first 2 s,
V₁ = Δd₁/t
Where V₁ = Average velocity for the first 2 s
Where Δd₁= distance, t = time
Δd₁ = 25.6-14.4 = 11.2 m t = 2 s
V₁ = 11.2/2
V₁ = 5.6 m/s
For the second 2 s,
V₂ =Δd₂/t
Where V₂ = average velocity for the second 2 s.
Δd₂= 40-25.6 = 14.4 m, t= 2 s
V₂ = 14.4/2
V₂ = 7.2 m/s
For the last 2 seconds,
V₃ =Δd₃/t
Where V₃ = average velocity for the last 2 s
where Δd₃ = 57.6- 40 = 17.6 m, t = 2 s
V₃ = 17.6/2
V₃ = 8.8 m/s.